A Comparative Microstructural Investigation of Nanostructured and Conventional Al2O3 Coatings Deposited by Plasma Spraying View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-11-12

AUTHORS

D. Zois, A. Lekatou, M. Vardavoulias, I. Panagiotopoulos, A. Vazdirvanidis

ABSTRACT

Nanostructured and conventional Al2O3 powders have been plasma sprayed to produce coatings. The parameters for retaining a fraction of the nanostructure were investigated. Dissimilarities were observed between the two types of coating, regarding properties and phase proportions, which are related with the different percentages of semimolten particles in the coatings. The nanocoatings retained a higher percentage of semimolten particles than the conventional coatings owing to the higher porosity of the nanoparticle agglomerates. The molten part of both conventional and nanostructured coatings consisted of γ-Al2O3 of columnar morphology. In order to investigate the mechanism of the melting front advance into the particle interior, the particles were sprayed directly into deionized water. The nanoparticles mainly formed hollow spheres, whereas the conventional particles mainly formed compact spheres. The internal porosity of the solidified nanoparticle agglomerates, which affected the overall coating porosity and, consequently, coating properties such as hardness, adhesion, and surface roughness, was linked to the hollow sphere phenomenon. More... »

PAGES

887-894

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11666-008-9268-z

DOI

http://dx.doi.org/10.1007/s11666-008-9268-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027802173


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Ioannina, 45111, Ioannina, Greece", 
          "id": "http://www.grid.ac/institutes/grid.9594.1", 
          "name": [
            "Pyrogenesis SA, Technological Park of Lavrion, 19500, Lavrion, Greece", 
            "Department of Materials Science and Engineering, University of Ioannina, 45111, Ioannina, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zois", 
        "givenName": "D.", 
        "id": "sg:person.012552740042.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012552740042.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Ioannina, 45111, Ioannina, Greece", 
          "id": "http://www.grid.ac/institutes/grid.9594.1", 
          "name": [
            "Department of Materials Science and Engineering, University of Ioannina, 45111, Ioannina, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lekatou", 
        "givenName": "A.", 
        "id": "sg:person.010546326615.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010546326615.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Pyrogenesis SA, Technological Park of Lavrion, 19500, Lavrion, Greece", 
          "id": "http://www.grid.ac/institutes/grid.425712.7", 
          "name": [
            "Pyrogenesis SA, Technological Park of Lavrion, 19500, Lavrion, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vardavoulias", 
        "givenName": "M.", 
        "id": "sg:person.016106533637.74", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016106533637.74"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Materials Science and Engineering, University of Ioannina, 45111, Ioannina, Greece", 
          "id": "http://www.grid.ac/institutes/grid.9594.1", 
          "name": [
            "Department of Materials Science and Engineering, University of Ioannina, 45111, Ioannina, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panagiotopoulos", 
        "givenName": "I.", 
        "id": "sg:person.07530700325.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07530700325.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hellenic Centre for Metal Research, Pireos 252, 17778, Athens, Greece", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Hellenic Centre for Metal Research, Pireos 252, 17778, Athens, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vazdirvanidis", 
        "givenName": "A.", 
        "id": "sg:person.016336265117.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016336265117.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1361/105996399770350430", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000476348", 
          "https://doi.org/10.1361/105996399770350430"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02608550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036534484", 
          "https://doi.org/10.1007/bf02608550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11666-998-0058-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048240725", 
          "https://doi.org/10.1007/s11666-998-0058-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11666-006-9010-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028465494", 
          "https://doi.org/10.1007/s11666-006-9010-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1361/105996303770348221", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012420986", 
          "https://doi.org/10.1361/105996303770348221"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-11-12", 
    "datePublishedReg": "2008-11-12", 
    "description": "Nanostructured and conventional Al2O3 powders have been plasma sprayed to produce coatings. The parameters for retaining a fraction of the nanostructure were investigated. Dissimilarities were observed between the two types of coating, regarding properties and phase proportions, which are related with the different percentages of semimolten particles in the coatings. The nanocoatings retained a higher percentage of semimolten particles than the conventional coatings owing to the higher porosity of the nanoparticle agglomerates. The molten part of both conventional and nanostructured coatings consisted of \u03b3-Al2O3 of columnar morphology. In order to investigate the mechanism of the melting front advance into the particle interior, the particles were sprayed directly into deionized water. The nanoparticles mainly formed hollow spheres, whereas the conventional particles mainly formed compact spheres. The internal porosity of the solidified nanoparticle agglomerates, which affected the overall coating porosity and, consequently, coating properties such as hardness, adhesion, and surface roughness, was linked to the hollow sphere phenomenon.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11666-008-9268-z", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136229", 
        "issn": [
          "1059-9630", 
          "1544-1016"
        ], 
        "name": "Journal of Thermal Spray Technology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "nanoparticle agglomerates", 
      "nanostructured coatings", 
      "types of coatings", 
      "hollow spheres", 
      "conventional coatings", 
      "high porosity", 
      "conventional particles", 
      "plasma spraying", 
      "coating porosity", 
      "Al2O3 coating", 
      "Al2O3 powder", 
      "coating properties", 
      "microstructural investigations", 
      "surface roughness", 
      "internal porosity", 
      "coatings", 
      "molten part", 
      "columnar morphology", 
      "particle interior", 
      "different percentages", 
      "porosity", 
      "front advance", 
      "\u03b3-Al2O3", 
      "phase proportions", 
      "agglomerates", 
      "nanoparticles", 
      "nanostructures", 
      "Nanostructured", 
      "particles", 
      "nanocoatings", 
      "roughness", 
      "properties", 
      "hardness", 
      "powder", 
      "morphology", 
      "compact spheres", 
      "spraying", 
      "water", 
      "advances", 
      "sphere", 
      "adhesion", 
      "parameters", 
      "interior", 
      "phenomenon", 
      "investigation", 
      "order", 
      "fraction", 
      "plasma", 
      "mechanism", 
      "part", 
      "types", 
      "percentage", 
      "high percentage", 
      "dissimilarity", 
      "proportion"
    ], 
    "name": "A Comparative Microstructural Investigation of Nanostructured and Conventional Al2O3 Coatings Deposited by Plasma Spraying", 
    "pagination": "887-894", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027802173"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11666-008-9268-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11666-008-9268-z", 
      "https://app.dimensions.ai/details/publication/pub.1027802173"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-09-02T15:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_472.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11666-008-9268-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11666-008-9268-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11666-008-9268-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11666-008-9268-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11666-008-9268-z'


 

This table displays all metadata directly associated to this object as RDF triples.

167 TRIPLES      21 PREDICATES      84 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11666-008-9268-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N4d9fc34622a845799a7f24f8396fd1df
4 schema:citation sg:pub.10.1007/bf02608550
5 sg:pub.10.1007/s11666-006-9010-7
6 sg:pub.10.1007/s11666-998-0058-4
7 sg:pub.10.1361/105996303770348221
8 sg:pub.10.1361/105996399770350430
9 schema:datePublished 2008-11-12
10 schema:datePublishedReg 2008-11-12
11 schema:description Nanostructured and conventional Al2O3 powders have been plasma sprayed to produce coatings. The parameters for retaining a fraction of the nanostructure were investigated. Dissimilarities were observed between the two types of coating, regarding properties and phase proportions, which are related with the different percentages of semimolten particles in the coatings. The nanocoatings retained a higher percentage of semimolten particles than the conventional coatings owing to the higher porosity of the nanoparticle agglomerates. The molten part of both conventional and nanostructured coatings consisted of γ-Al2O3 of columnar morphology. In order to investigate the mechanism of the melting front advance into the particle interior, the particles were sprayed directly into deionized water. The nanoparticles mainly formed hollow spheres, whereas the conventional particles mainly formed compact spheres. The internal porosity of the solidified nanoparticle agglomerates, which affected the overall coating porosity and, consequently, coating properties such as hardness, adhesion, and surface roughness, was linked to the hollow sphere phenomenon.
12 schema:genre article
13 schema:isAccessibleForFree false
14 schema:isPartOf N21529ef14ba644a5a85a0f75f99c6a91
15 Nb93aaa972b3f41698f3c6980fb65b02f
16 sg:journal.1136229
17 schema:keywords Al2O3 coating
18 Al2O3 powder
19 Nanostructured
20 adhesion
21 advances
22 agglomerates
23 coating porosity
24 coating properties
25 coatings
26 columnar morphology
27 compact spheres
28 conventional coatings
29 conventional particles
30 different percentages
31 dissimilarity
32 fraction
33 front advance
34 hardness
35 high percentage
36 high porosity
37 hollow spheres
38 interior
39 internal porosity
40 investigation
41 mechanism
42 microstructural investigations
43 molten part
44 morphology
45 nanocoatings
46 nanoparticle agglomerates
47 nanoparticles
48 nanostructured coatings
49 nanostructures
50 order
51 parameters
52 part
53 particle interior
54 particles
55 percentage
56 phase proportions
57 phenomenon
58 plasma
59 plasma spraying
60 porosity
61 powder
62 properties
63 proportion
64 roughness
65 sphere
66 spraying
67 surface roughness
68 types
69 types of coatings
70 water
71 γ-Al2O3
72 schema:name A Comparative Microstructural Investigation of Nanostructured and Conventional Al2O3 Coatings Deposited by Plasma Spraying
73 schema:pagination 887-894
74 schema:productId N7af1fe204117424ab1fd3c053b6b61f7
75 N7fd62419c8b4431cbc344cf7708ce783
76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027802173
77 https://doi.org/10.1007/s11666-008-9268-z
78 schema:sdDatePublished 2022-09-02T15:54
79 schema:sdLicense https://scigraph.springernature.com/explorer/license/
80 schema:sdPublisher N1ce4b1f55c78452aa0d83a634dacaa9b
81 schema:url https://doi.org/10.1007/s11666-008-9268-z
82 sgo:license sg:explorer/license/
83 sgo:sdDataset articles
84 rdf:type schema:ScholarlyArticle
85 N1ce4b1f55c78452aa0d83a634dacaa9b schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N21529ef14ba644a5a85a0f75f99c6a91 schema:issueNumber 5-6
88 rdf:type schema:PublicationIssue
89 N2df9961c3f7149cb8f6b1369438dd165 rdf:first sg:person.016336265117.98
90 rdf:rest rdf:nil
91 N3263354c5ad74876b0472c4585a918d6 rdf:first sg:person.010546326615.06
92 rdf:rest N8cef5426e6974d6cafd4aa42b8438970
93 N4d9fc34622a845799a7f24f8396fd1df rdf:first sg:person.012552740042.02
94 rdf:rest N3263354c5ad74876b0472c4585a918d6
95 N730594d06b1c4d9d95e786204ed7a7d1 rdf:first sg:person.07530700325.01
96 rdf:rest N2df9961c3f7149cb8f6b1369438dd165
97 N7af1fe204117424ab1fd3c053b6b61f7 schema:name doi
98 schema:value 10.1007/s11666-008-9268-z
99 rdf:type schema:PropertyValue
100 N7fd62419c8b4431cbc344cf7708ce783 schema:name dimensions_id
101 schema:value pub.1027802173
102 rdf:type schema:PropertyValue
103 N8cef5426e6974d6cafd4aa42b8438970 rdf:first sg:person.016106533637.74
104 rdf:rest N730594d06b1c4d9d95e786204ed7a7d1
105 Nb93aaa972b3f41698f3c6980fb65b02f schema:volumeNumber 17
106 rdf:type schema:PublicationVolume
107 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
108 schema:name Engineering
109 rdf:type schema:DefinedTerm
110 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
111 schema:name Materials Engineering
112 rdf:type schema:DefinedTerm
113 sg:journal.1136229 schema:issn 1059-9630
114 1544-1016
115 schema:name Journal of Thermal Spray Technology
116 schema:publisher Springer Nature
117 rdf:type schema:Periodical
118 sg:person.010546326615.06 schema:affiliation grid-institutes:grid.9594.1
119 schema:familyName Lekatou
120 schema:givenName A.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010546326615.06
122 rdf:type schema:Person
123 sg:person.012552740042.02 schema:affiliation grid-institutes:grid.9594.1
124 schema:familyName Zois
125 schema:givenName D.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012552740042.02
127 rdf:type schema:Person
128 sg:person.016106533637.74 schema:affiliation grid-institutes:grid.425712.7
129 schema:familyName Vardavoulias
130 schema:givenName M.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016106533637.74
132 rdf:type schema:Person
133 sg:person.016336265117.98 schema:affiliation grid-institutes:None
134 schema:familyName Vazdirvanidis
135 schema:givenName A.
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016336265117.98
137 rdf:type schema:Person
138 sg:person.07530700325.01 schema:affiliation grid-institutes:grid.9594.1
139 schema:familyName Panagiotopoulos
140 schema:givenName I.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07530700325.01
142 rdf:type schema:Person
143 sg:pub.10.1007/bf02608550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036534484
144 https://doi.org/10.1007/bf02608550
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11666-006-9010-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028465494
147 https://doi.org/10.1007/s11666-006-9010-7
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11666-998-0058-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048240725
150 https://doi.org/10.1007/s11666-998-0058-4
151 rdf:type schema:CreativeWork
152 sg:pub.10.1361/105996303770348221 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012420986
153 https://doi.org/10.1361/105996303770348221
154 rdf:type schema:CreativeWork
155 sg:pub.10.1361/105996399770350430 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000476348
156 https://doi.org/10.1361/105996399770350430
157 rdf:type schema:CreativeWork
158 grid-institutes:None schema:alternateName Hellenic Centre for Metal Research, Pireos 252, 17778, Athens, Greece
159 schema:name Hellenic Centre for Metal Research, Pireos 252, 17778, Athens, Greece
160 rdf:type schema:Organization
161 grid-institutes:grid.425712.7 schema:alternateName Pyrogenesis SA, Technological Park of Lavrion, 19500, Lavrion, Greece
162 schema:name Pyrogenesis SA, Technological Park of Lavrion, 19500, Lavrion, Greece
163 rdf:type schema:Organization
164 grid-institutes:grid.9594.1 schema:alternateName Department of Materials Science and Engineering, University of Ioannina, 45111, Ioannina, Greece
165 schema:name Department of Materials Science and Engineering, University of Ioannina, 45111, Ioannina, Greece
166 Pyrogenesis SA, Technological Park of Lavrion, 19500, Lavrion, Greece
167 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...