Effect of Retrogression and Re-Aging on Microstructures and Mechanical Properties of an Al-Cu-Mg Alloy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-28

AUTHORS

Yongxin Jia, Ruiming Su, Hongyu Liao, Guanglong Li, Yingdong Qu, Rongde Li

ABSTRACT

The good mechanical properties of aluminum alloys can be obtained by the retrogression and re-aging (RRA) treatment. The microstructure of Al-Cu-Mg alloy after each stage of RRA treatment was observed by transmission electron microscopy (TEM), the mechanical properties of the alloy was studied by hardness tests and the wear resistance was studied by reciprocating friction tests. The results show that the hardness of Al-Cu-Mg alloy after pre-aging at 190 °C for 2 h, retrogression at 320 °C for 0.2 h and re-aging at 190 °C for 8 h reaches the peak, which is 148.6 HV, and the wear resistance is the best. The strengthening phases of Al-Cu-Mg alloy after RRA treatment mainly are S phases. When the pre-aging is in the under-aging state, it is beneficial to redissolve S phases into the alloy during the retrogression. An appropriate retrogression time is beneficial to the formation of more and fine S phases after RRA treatment. More... »

PAGES

1-9

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-022-07170-z

DOI

http://dx.doi.org/10.1007/s11665-022-07170-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1149821753


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Shenyang University of Technology, 110870, Shenyang, China", 
          "id": "http://www.grid.ac/institutes/grid.443558.b", 
          "name": [
            "School of Materials Science and Engineering, Shenyang University of Technology, 110870, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jia", 
        "givenName": "Yongxin", 
        "id": "sg:person.011503270253.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011503270253.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Shenyang University of Technology, 110870, Shenyang, China", 
          "id": "http://www.grid.ac/institutes/grid.443558.b", 
          "name": [
            "School of Materials Science and Engineering, Shenyang University of Technology, 110870, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Su", 
        "givenName": "Ruiming", 
        "id": "sg:person.016554433630.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016554433630.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Shenyang University of Technology, 110870, Shenyang, China", 
          "id": "http://www.grid.ac/institutes/grid.443558.b", 
          "name": [
            "School of Materials Science and Engineering, Shenyang University of Technology, 110870, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liao", 
        "givenName": "Hongyu", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Shenyang University of Technology, 110870, Shenyang, China", 
          "id": "http://www.grid.ac/institutes/grid.443558.b", 
          "name": [
            "School of Materials Science and Engineering, Shenyang University of Technology, 110870, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Guanglong", 
        "id": "sg:person.015067123515.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015067123515.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Shenyang University of Technology, 110870, Shenyang, China", 
          "id": "http://www.grid.ac/institutes/grid.443558.b", 
          "name": [
            "School of Materials Science and Engineering, Shenyang University of Technology, 110870, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qu", 
        "givenName": "Yingdong", 
        "id": "sg:person.010703423015.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010703423015.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Materials Science and Engineering, Shenyang University of Technology, 110870, Shenyang, China", 
          "id": "http://www.grid.ac/institutes/grid.443558.b", 
          "name": [
            "School of Materials Science and Engineering, Shenyang University of Technology, 110870, Shenyang, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Rongde", 
        "id": "sg:person.015264266015.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015264266015.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10853-006-0659-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014127681", 
          "https://doi.org/10.1007/s10853-006-0659-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-017-4204-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090379099", 
          "https://doi.org/10.1007/s11661-017-4204-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-010-9739-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024344983", 
          "https://doi.org/10.1007/s11665-010-9739-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s40195-017-0565-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084038405", 
          "https://doi.org/10.1007/s40195-017-0565-8"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-07-28", 
    "datePublishedReg": "2022-07-28", 
    "description": "The good mechanical properties of aluminum alloys can be obtained by the retrogression and re-aging (RRA) treatment. The microstructure of Al-Cu-Mg alloy after each stage of RRA treatment was observed by transmission electron microscopy (TEM), the mechanical properties of the alloy was studied by hardness tests and the wear resistance was studied by reciprocating friction tests. The results show that the hardness of Al-Cu-Mg alloy after pre-aging at 190\u00a0\u00b0C for 2\u00a0h, retrogression at 320\u00a0\u00b0C for 0.2\u00a0h and re-aging at 190\u00a0\u00b0C for 8\u00a0h reaches the peak, which is 148.6 HV, and the wear resistance is the best. The strengthening phases of Al-Cu-Mg alloy after RRA treatment mainly are S phases. When the pre-aging is in the under-aging state, it is beneficial to redissolve S phases into the alloy during the retrogression. An appropriate retrogression time is beneficial to the formation of more and fine S phases after RRA treatment.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11665-022-07170-z", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.8280133", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }
    ], 
    "keywords": [
      "Mg alloy", 
      "mechanical properties", 
      "RRA treatment", 
      "Al-Cu", 
      "wear resistance", 
      "transmission electron microscopy", 
      "re-aging (RRA) treatment", 
      "good mechanical properties", 
      "effect of retrogression", 
      "aluminum alloy", 
      "friction tests", 
      "retrogression time", 
      "hardness test", 
      "alloy", 
      "microstructure", 
      "electron microscopy", 
      "properties", 
      "hardness", 
      "phase", 
      "HV", 
      "resistance", 
      "microscopy", 
      "test", 
      "Re", 
      "retrogression", 
      "peak", 
      "formation", 
      "results", 
      "time", 
      "effect", 
      "stage", 
      "state", 
      "treatment", 
      "S phase"
    ], 
    "name": "Effect of Retrogression and Re-Aging on Microstructures and Mechanical Properties of an Al-Cu-Mg Alloy", 
    "pagination": "1-9", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1149821753"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-022-07170-z"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-022-07170-z", 
      "https://app.dimensions.ai/details/publication/pub.1149821753"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:50", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_956.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11665-022-07170-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-022-07170-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-022-07170-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-022-07170-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-022-07170-z'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      21 PREDICATES      60 URIs      48 LITERALS      4 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-022-07170-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N2fbf9ee70f34445f85c43bc8f7466bd3
4 schema:citation sg:pub.10.1007/s10853-006-0659-6
5 sg:pub.10.1007/s11661-017-4204-9
6 sg:pub.10.1007/s11665-010-9739-5
7 sg:pub.10.1007/s40195-017-0565-8
8 schema:datePublished 2022-07-28
9 schema:datePublishedReg 2022-07-28
10 schema:description The good mechanical properties of aluminum alloys can be obtained by the retrogression and re-aging (RRA) treatment. The microstructure of Al-Cu-Mg alloy after each stage of RRA treatment was observed by transmission electron microscopy (TEM), the mechanical properties of the alloy was studied by hardness tests and the wear resistance was studied by reciprocating friction tests. The results show that the hardness of Al-Cu-Mg alloy after pre-aging at 190 °C for 2 h, retrogression at 320 °C for 0.2 h and re-aging at 190 °C for 8 h reaches the peak, which is 148.6 HV, and the wear resistance is the best. The strengthening phases of Al-Cu-Mg alloy after RRA treatment mainly are S phases. When the pre-aging is in the under-aging state, it is beneficial to redissolve S phases into the alloy during the retrogression. An appropriate retrogression time is beneficial to the formation of more and fine S phases after RRA treatment.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf sg:journal.1042007
14 schema:keywords Al-Cu
15 HV
16 Mg alloy
17 RRA treatment
18 Re
19 S phase
20 alloy
21 aluminum alloy
22 effect
23 effect of retrogression
24 electron microscopy
25 formation
26 friction tests
27 good mechanical properties
28 hardness
29 hardness test
30 mechanical properties
31 microscopy
32 microstructure
33 peak
34 phase
35 properties
36 re-aging (RRA) treatment
37 resistance
38 results
39 retrogression
40 retrogression time
41 stage
42 state
43 test
44 time
45 transmission electron microscopy
46 treatment
47 wear resistance
48 schema:name Effect of Retrogression and Re-Aging on Microstructures and Mechanical Properties of an Al-Cu-Mg Alloy
49 schema:pagination 1-9
50 schema:productId N65d573fb992a4d158d32b9a099350795
51 Naefb25aa2db849e1ba76122e71c178b4
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149821753
53 https://doi.org/10.1007/s11665-022-07170-z
54 schema:sdDatePublished 2022-10-01T06:50
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N703ef98ea7be4dfe944ac4f88c244668
57 schema:url https://doi.org/10.1007/s11665-022-07170-z
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N2fbf9ee70f34445f85c43bc8f7466bd3 rdf:first sg:person.011503270253.64
62 rdf:rest N45b9f5bb3c93481f87bd50610c491903
63 N45b9f5bb3c93481f87bd50610c491903 rdf:first sg:person.016554433630.28
64 rdf:rest Nb3705d65e1a345d68adb4f00be13e250
65 N4891c408fb6140f2afd7271e89dd9aae rdf:first sg:person.015264266015.34
66 rdf:rest rdf:nil
67 N573e27cac1bc4c698fe13df404942518 rdf:first sg:person.010703423015.73
68 rdf:rest N4891c408fb6140f2afd7271e89dd9aae
69 N65d573fb992a4d158d32b9a099350795 schema:name doi
70 schema:value 10.1007/s11665-022-07170-z
71 rdf:type schema:PropertyValue
72 N703ef98ea7be4dfe944ac4f88c244668 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 Naefb25aa2db849e1ba76122e71c178b4 schema:name dimensions_id
75 schema:value pub.1149821753
76 rdf:type schema:PropertyValue
77 Nb3705d65e1a345d68adb4f00be13e250 rdf:first Nefb99ad32bf24275b8d50164615a3f0a
78 rdf:rest Nec9e6cb388974ba8841d19cb565988db
79 Nec9e6cb388974ba8841d19cb565988db rdf:first sg:person.015067123515.26
80 rdf:rest N573e27cac1bc4c698fe13df404942518
81 Nefb99ad32bf24275b8d50164615a3f0a schema:affiliation grid-institutes:grid.443558.b
82 schema:familyName Liao
83 schema:givenName Hongyu
84 rdf:type schema:Person
85 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
86 schema:name Engineering
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
89 schema:name Materials Engineering
90 rdf:type schema:DefinedTerm
91 sg:grant.8280133 http://pending.schema.org/fundedItem sg:pub.10.1007/s11665-022-07170-z
92 rdf:type schema:MonetaryGrant
93 sg:journal.1042007 schema:issn 1059-9495
94 1544-1024
95 schema:name Journal of Materials Engineering and Performance
96 schema:publisher Springer Nature
97 rdf:type schema:Periodical
98 sg:person.010703423015.73 schema:affiliation grid-institutes:grid.443558.b
99 schema:familyName Qu
100 schema:givenName Yingdong
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010703423015.73
102 rdf:type schema:Person
103 sg:person.011503270253.64 schema:affiliation grid-institutes:grid.443558.b
104 schema:familyName Jia
105 schema:givenName Yongxin
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011503270253.64
107 rdf:type schema:Person
108 sg:person.015067123515.26 schema:affiliation grid-institutes:grid.443558.b
109 schema:familyName Li
110 schema:givenName Guanglong
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015067123515.26
112 rdf:type schema:Person
113 sg:person.015264266015.34 schema:affiliation grid-institutes:grid.443558.b
114 schema:familyName Li
115 schema:givenName Rongde
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015264266015.34
117 rdf:type schema:Person
118 sg:person.016554433630.28 schema:affiliation grid-institutes:grid.443558.b
119 schema:familyName Su
120 schema:givenName Ruiming
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016554433630.28
122 rdf:type schema:Person
123 sg:pub.10.1007/s10853-006-0659-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014127681
124 https://doi.org/10.1007/s10853-006-0659-6
125 rdf:type schema:CreativeWork
126 sg:pub.10.1007/s11661-017-4204-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090379099
127 https://doi.org/10.1007/s11661-017-4204-9
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/s11665-010-9739-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024344983
130 https://doi.org/10.1007/s11665-010-9739-5
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s40195-017-0565-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084038405
133 https://doi.org/10.1007/s40195-017-0565-8
134 rdf:type schema:CreativeWork
135 grid-institutes:grid.443558.b schema:alternateName School of Materials Science and Engineering, Shenyang University of Technology, 110870, Shenyang, China
136 schema:name School of Materials Science and Engineering, Shenyang University of Technology, 110870, Shenyang, China
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...