A Study of the Oxidation of Gd-Doped FeCrAl in 1000 °C Steam Environments View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-26

AUTHORS

Riu Liu, Hongliang Sun, Qianqian Guo, Minjin Jiang, Xiaosong Jiang

ABSTRACT

This study investigated the isothermal oxidation behavior of FeCrAl-(0, 1, 2, 4) wt.% Gd alloys when prepared by spark plasma sintering at 1000 °C in steam. When doped with Gd, the FeCrAl alloy oxidation kinetics significantly improved and showed excellent resistance to high-temperature steam oxidation. The 1.0 Gd alloy gained the least mass (0.32 mg/cm2) and the oxide scale was thinnest (1.9 ± 0.2 μm) after the FeCrAl alloy was treated in steam for 100 h. However, when Gd content is more than 1 wt.%, the oxidation resistance of the alloy decreases at high temperature, but it is still better than that of the alloy without Gd. The oxide layer of FeCrAl-(0, 1, 2, 4) wt.% Gd alloy was mainly Al2O3 and Gd doping slightly inhibited growth in Al2O3 oxide layer. Gd-rich particles were dispersed in the matrix, reducing the diffusion rate of oxygen and inhibiting the outward diffusion of Al. This reduced the growth rate and also the spallation rate of the oxide skin on the FeCrAl alloy. Gd reduced the oxidation rate of the alloy by changing the diffusion process of the oxide layer. More... »

PAGES

1-15

References to SciGraph publications

  • 1982-12. Microstructure, adhesion and growth kinetics of protective scales on metals and alloys in OXIDATION OF METALS
  • 2016-05-06. Current Thoughts on Reactive Element Effects in Alumina-Forming Systems: In Memory of John Stringer in OXIDATION OF METALS
  • 2008-07-01. Modification of alumina scale formation on FeCrAlY alloys by minor additions of group IVa elements in JOURNAL OF MATERIALS SCIENCE
  • 1972-06. Mechanism of oxide adherence on Fe-25Cr-4Al (Y or Sc) alloys in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2018-09-28. In Steam Short-Time Oxidation Kinetics of FeCrAl Alloys in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 2018-08-04. Effect of Titanium Addition on Alumina Growth Mechanism on Yttria-Containing FeCrAl-Base Alloy in OXIDATION OF METALS
  • 1987-02. On the reasons for the effects of dispersions of stable oxides and additions of reactive elements on the adhesion and growth-mechanisms of chromia and alumina scales-the “sulfur effect” in OXIDATION OF METALS
  • 2015-09-14. Material Selection for Accident Tolerant Fuel Cladding in METALLURGICAL AND MATERIALS TRANSACTIONS E
  • 1987-04. Calculations of parabolic reaction rate constants in OXIDATION OF METALS
  • 2020-05-08. Effect of Zr on Initial Oxidation Behavior of FeCrAl Alloys in OXIDATION OF METALS
  • 1996-02. Experimental observations in support of the dynamic-segregation theory to explain the reactive-element effect in OXIDATION OF METALS
  • 1972-10. The high-temperature oxidation of nickel-20 wt. % chromium alloys containing dispersed oxide phases in OXIDATION OF METALS
  • 2015-02-04. Oxidation of a Dispersion-Strengthened Powder Metallurgical FeCrAl Alloy in the Presence of O2 at 1,100 °C: The Influence of Water Vapour in OXIDATION OF METALS
  • 2007-11-01. Correlation between the Microstructure, Growth Mechanism, and Growth Kinetics of Alumina Scales on a FeCrAlY Alloy in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11665-022-07161-0

    DOI

    http://dx.doi.org/10.1007/s11665-022-07161-0

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149766050


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu Sichuan, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.263901.f", 
              "name": [
                "Key Laboratory of Advanced Technologies of Materials, Ministry of Education, 610031, Chengdu, People\u2019s Republic of China", 
                "School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu Sichuan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Riu", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu Sichuan, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.263901.f", 
              "name": [
                "Key Laboratory of Advanced Technologies of Materials, Ministry of Education, 610031, Chengdu, People\u2019s Republic of China", 
                "School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu Sichuan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sun", 
            "givenName": "Hongliang", 
            "id": "sg:person.010554417050.94", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010554417050.94"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu Sichuan, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.263901.f", 
              "name": [
                "Key Laboratory of Advanced Technologies of Materials, Ministry of Education, 610031, Chengdu, People\u2019s Republic of China", 
                "School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu Sichuan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Qianqian", 
            "id": "sg:person.012036770175.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036770175.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu Sichuan, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.263901.f", 
              "name": [
                "Key Laboratory of Advanced Technologies of Materials, Ministry of Education, 610031, Chengdu, People\u2019s Republic of China", 
                "School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu Sichuan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Minjin", 
            "id": "sg:person.010444027175.07", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010444027175.07"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu Sichuan, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.263901.f", 
              "name": [
                "Key Laboratory of Advanced Technologies of Materials, Ministry of Education, 610031, Chengdu, People\u2019s Republic of China", 
                "School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu Sichuan, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jiang", 
            "givenName": "Xiaosong", 
            "id": "sg:person.010670433323.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010670433323.00"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00614617", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018167475", 
              "https://doi.org/10.1007/bf00614617"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11085-015-9534-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040889904", 
              "https://doi.org/10.1007/s11085-015-9534-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-008-2639-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037290526", 
              "https://doi.org/10.1007/s10853-008-2639-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00667057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002755393", 
              "https://doi.org/10.1007/bf00667057"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00656731", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042165442", 
              "https://doi.org/10.1007/bf00656731"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11085-016-9625-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035861211", 
              "https://doi.org/10.1007/s11085-016-9625-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00656571", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015024549", 
              "https://doi.org/10.1007/bf00656571"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s40553-015-0056-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007014318", 
              "https://doi.org/10.1007/s40553-015-0056-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02643050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034193906", 
              "https://doi.org/10.1007/bf02643050"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11085-018-9861-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106003600", 
              "https://doi.org/10.1007/s11085-018-9861-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01046818", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039935119", 
              "https://doi.org/10.1007/bf01046818"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11085-020-09972-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1127468849", 
              "https://doi.org/10.1007/s11085-020-09972-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-007-9342-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046063173", 
              "https://doi.org/10.1007/s11661-007-9342-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-018-3665-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1107301455", 
              "https://doi.org/10.1007/s11665-018-3665-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-26", 
        "datePublishedReg": "2022-07-26", 
        "description": "This study investigated the isothermal oxidation behavior of FeCrAl-(0, 1, 2, 4) wt.% Gd alloys when prepared by spark plasma sintering at 1000\u00a0\u00b0C in steam. When doped with Gd, the FeCrAl alloy oxidation kinetics significantly improved and showed excellent resistance to high-temperature steam oxidation. The 1.0 Gd alloy gained the least mass (0.32\u00a0mg/cm2) and the oxide scale was thinnest (1.9\u2009\u00b1\u20090.2\u00a0\u03bcm) after the FeCrAl alloy was treated in steam for 100\u00a0h. However, when Gd content is more than 1 wt.%, the oxidation resistance of the alloy decreases at high temperature, but it is still better than that of the alloy without Gd. The oxide layer of FeCrAl-(0, 1, 2, 4) wt.% Gd alloy was mainly Al2O3 and Gd doping slightly inhibited growth in Al2O3 oxide layer. Gd-rich particles were dispersed in the matrix, reducing the diffusion rate of oxygen and inhibiting the outward diffusion of Al. This reduced the growth rate and also the spallation rate of the oxide skin on the FeCrAl alloy. Gd reduced the oxidation rate of the alloy by changing the diffusion process of the oxide layer.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11665-022-07161-0", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042007", 
            "issn": [
              "1059-9495", 
              "1544-1024"
            ], 
            "name": "Journal of Materials Engineering and Performance", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "oxide layer", 
          "FeCrAl alloys", 
          "Gd alloys", 
          "high-temperature steam oxidation", 
          "Al2O3 oxide layer", 
          "C steam environment", 
          "isothermal oxidation behavior", 
          "oxide scale", 
          "spark plasma", 
          "oxide skin", 
          "steam oxidation", 
          "oxidation resistance", 
          "steam environment", 
          "oxidation behavior", 
          "excellent resistance", 
          "outward diffusion", 
          "alloy", 
          "spallation rate", 
          "oxidation kinetics", 
          "high temperature", 
          "steam", 
          "Gd content", 
          "diffusion rate", 
          "layer", 
          "oxidation rate", 
          "diffusion process", 
          "FeCrAl", 
          "Al2O3", 
          "resistance", 
          "oxidation", 
          "particles", 
          "Gd", 
          "temperature", 
          "wt", 
          "diffusion", 
          "matrix", 
          "growth rate", 
          "kinetics", 
          "rate", 
          "behavior", 
          "process", 
          "oxygen", 
          "al", 
          "plasma", 
          "content", 
          "environment", 
          "scale", 
          "study", 
          "growth", 
          "skin"
        ], 
        "name": "A Study of the Oxidation of Gd-Doped FeCrAl in 1000 \u00b0C Steam Environments", 
        "pagination": "1-15", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149766050"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11665-022-07161-0"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11665-022-07161-0", 
          "https://app.dimensions.ai/details/publication/pub.1149766050"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:08", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_935.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11665-022-07161-0"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-022-07161-0'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-022-07161-0'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-022-07161-0'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-022-07161-0'


     

    This table displays all metadata directly associated to this object as RDF triples.

    185 TRIPLES      21 PREDICATES      86 URIs      64 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11665-022-07161-0 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nc3329f97a6004c47a40dd6ee39555798
    4 schema:citation sg:pub.10.1007/bf00614617
    5 sg:pub.10.1007/bf00656571
    6 sg:pub.10.1007/bf00656731
    7 sg:pub.10.1007/bf00667057
    8 sg:pub.10.1007/bf01046818
    9 sg:pub.10.1007/bf02643050
    10 sg:pub.10.1007/s10853-008-2639-5
    11 sg:pub.10.1007/s11085-015-9534-7
    12 sg:pub.10.1007/s11085-016-9625-0
    13 sg:pub.10.1007/s11085-018-9861-6
    14 sg:pub.10.1007/s11085-020-09972-9
    15 sg:pub.10.1007/s11661-007-9342-z
    16 sg:pub.10.1007/s11665-018-3665-3
    17 sg:pub.10.1007/s40553-015-0056-7
    18 schema:datePublished 2022-07-26
    19 schema:datePublishedReg 2022-07-26
    20 schema:description This study investigated the isothermal oxidation behavior of FeCrAl-(0, 1, 2, 4) wt.% Gd alloys when prepared by spark plasma sintering at 1000 °C in steam. When doped with Gd, the FeCrAl alloy oxidation kinetics significantly improved and showed excellent resistance to high-temperature steam oxidation. The 1.0 Gd alloy gained the least mass (0.32 mg/cm2) and the oxide scale was thinnest (1.9 ± 0.2 μm) after the FeCrAl alloy was treated in steam for 100 h. However, when Gd content is more than 1 wt.%, the oxidation resistance of the alloy decreases at high temperature, but it is still better than that of the alloy without Gd. The oxide layer of FeCrAl-(0, 1, 2, 4) wt.% Gd alloy was mainly Al2O3 and Gd doping slightly inhibited growth in Al2O3 oxide layer. Gd-rich particles were dispersed in the matrix, reducing the diffusion rate of oxygen and inhibiting the outward diffusion of Al. This reduced the growth rate and also the spallation rate of the oxide skin on the FeCrAl alloy. Gd reduced the oxidation rate of the alloy by changing the diffusion process of the oxide layer.
    21 schema:genre article
    22 schema:isAccessibleForFree false
    23 schema:isPartOf sg:journal.1042007
    24 schema:keywords Al2O3
    25 Al2O3 oxide layer
    26 C steam environment
    27 FeCrAl
    28 FeCrAl alloys
    29 Gd
    30 Gd alloys
    31 Gd content
    32 al
    33 alloy
    34 behavior
    35 content
    36 diffusion
    37 diffusion process
    38 diffusion rate
    39 environment
    40 excellent resistance
    41 growth
    42 growth rate
    43 high temperature
    44 high-temperature steam oxidation
    45 isothermal oxidation behavior
    46 kinetics
    47 layer
    48 matrix
    49 outward diffusion
    50 oxidation
    51 oxidation behavior
    52 oxidation kinetics
    53 oxidation rate
    54 oxidation resistance
    55 oxide layer
    56 oxide scale
    57 oxide skin
    58 oxygen
    59 particles
    60 plasma
    61 process
    62 rate
    63 resistance
    64 scale
    65 skin
    66 spallation rate
    67 spark plasma
    68 steam
    69 steam environment
    70 steam oxidation
    71 study
    72 temperature
    73 wt
    74 schema:name A Study of the Oxidation of Gd-Doped FeCrAl in 1000 °C Steam Environments
    75 schema:pagination 1-15
    76 schema:productId N51665c3c5e29402994ef6a212553edae
    77 N65fe3c0fb5bf43f9b343face84eb6b58
    78 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149766050
    79 https://doi.org/10.1007/s11665-022-07161-0
    80 schema:sdDatePublished 2022-09-02T16:08
    81 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    82 schema:sdPublisher N935aa6d8cc7d4f22a45fb00750092136
    83 schema:url https://doi.org/10.1007/s11665-022-07161-0
    84 sgo:license sg:explorer/license/
    85 sgo:sdDataset articles
    86 rdf:type schema:ScholarlyArticle
    87 N3725dca12a7d4f42945e3df9557f1e35 rdf:first sg:person.012036770175.09
    88 rdf:rest Ndf9e09e216044e4ab3ad81ab2ec5460c
    89 N51665c3c5e29402994ef6a212553edae schema:name doi
    90 schema:value 10.1007/s11665-022-07161-0
    91 rdf:type schema:PropertyValue
    92 N568677b1a892493ab52ff8932524f20d schema:affiliation grid-institutes:grid.263901.f
    93 schema:familyName Liu
    94 schema:givenName Riu
    95 rdf:type schema:Person
    96 N65fe3c0fb5bf43f9b343face84eb6b58 schema:name dimensions_id
    97 schema:value pub.1149766050
    98 rdf:type schema:PropertyValue
    99 N935aa6d8cc7d4f22a45fb00750092136 schema:name Springer Nature - SN SciGraph project
    100 rdf:type schema:Organization
    101 Nc3329f97a6004c47a40dd6ee39555798 rdf:first N568677b1a892493ab52ff8932524f20d
    102 rdf:rest Ne1d565c963a448e49f587755b3302950
    103 Ndf9e09e216044e4ab3ad81ab2ec5460c rdf:first sg:person.010444027175.07
    104 rdf:rest Nf6e6bd19a4b34bb685c4896fdb8e5363
    105 Ne1d565c963a448e49f587755b3302950 rdf:first sg:person.010554417050.94
    106 rdf:rest N3725dca12a7d4f42945e3df9557f1e35
    107 Nf6e6bd19a4b34bb685c4896fdb8e5363 rdf:first sg:person.010670433323.00
    108 rdf:rest rdf:nil
    109 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    110 schema:name Engineering
    111 rdf:type schema:DefinedTerm
    112 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    113 schema:name Materials Engineering
    114 rdf:type schema:DefinedTerm
    115 sg:journal.1042007 schema:issn 1059-9495
    116 1544-1024
    117 schema:name Journal of Materials Engineering and Performance
    118 schema:publisher Springer Nature
    119 rdf:type schema:Periodical
    120 sg:person.010444027175.07 schema:affiliation grid-institutes:grid.263901.f
    121 schema:familyName Jiang
    122 schema:givenName Minjin
    123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010444027175.07
    124 rdf:type schema:Person
    125 sg:person.010554417050.94 schema:affiliation grid-institutes:grid.263901.f
    126 schema:familyName Sun
    127 schema:givenName Hongliang
    128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010554417050.94
    129 rdf:type schema:Person
    130 sg:person.010670433323.00 schema:affiliation grid-institutes:grid.263901.f
    131 schema:familyName Jiang
    132 schema:givenName Xiaosong
    133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010670433323.00
    134 rdf:type schema:Person
    135 sg:person.012036770175.09 schema:affiliation grid-institutes:grid.263901.f
    136 schema:familyName Guo
    137 schema:givenName Qianqian
    138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012036770175.09
    139 rdf:type schema:Person
    140 sg:pub.10.1007/bf00614617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018167475
    141 https://doi.org/10.1007/bf00614617
    142 rdf:type schema:CreativeWork
    143 sg:pub.10.1007/bf00656571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015024549
    144 https://doi.org/10.1007/bf00656571
    145 rdf:type schema:CreativeWork
    146 sg:pub.10.1007/bf00656731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042165442
    147 https://doi.org/10.1007/bf00656731
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/bf00667057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002755393
    150 https://doi.org/10.1007/bf00667057
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1007/bf01046818 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039935119
    153 https://doi.org/10.1007/bf01046818
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1007/bf02643050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034193906
    156 https://doi.org/10.1007/bf02643050
    157 rdf:type schema:CreativeWork
    158 sg:pub.10.1007/s10853-008-2639-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037290526
    159 https://doi.org/10.1007/s10853-008-2639-5
    160 rdf:type schema:CreativeWork
    161 sg:pub.10.1007/s11085-015-9534-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040889904
    162 https://doi.org/10.1007/s11085-015-9534-7
    163 rdf:type schema:CreativeWork
    164 sg:pub.10.1007/s11085-016-9625-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035861211
    165 https://doi.org/10.1007/s11085-016-9625-0
    166 rdf:type schema:CreativeWork
    167 sg:pub.10.1007/s11085-018-9861-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106003600
    168 https://doi.org/10.1007/s11085-018-9861-6
    169 rdf:type schema:CreativeWork
    170 sg:pub.10.1007/s11085-020-09972-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1127468849
    171 https://doi.org/10.1007/s11085-020-09972-9
    172 rdf:type schema:CreativeWork
    173 sg:pub.10.1007/s11661-007-9342-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046063173
    174 https://doi.org/10.1007/s11661-007-9342-z
    175 rdf:type schema:CreativeWork
    176 sg:pub.10.1007/s11665-018-3665-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107301455
    177 https://doi.org/10.1007/s11665-018-3665-3
    178 rdf:type schema:CreativeWork
    179 sg:pub.10.1007/s40553-015-0056-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007014318
    180 https://doi.org/10.1007/s40553-015-0056-7
    181 rdf:type schema:CreativeWork
    182 grid-institutes:grid.263901.f schema:alternateName School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu Sichuan, People’s Republic of China
    183 schema:name Key Laboratory of Advanced Technologies of Materials, Ministry of Education, 610031, Chengdu, People’s Republic of China
    184 School of Materials Science and Engineering, Southwest Jiaotong University, 610031, Chengdu Sichuan, People’s Republic of China
    185 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...