Small-Scale Impact Welding of High-Strength Aluminum Alloys: Process and Properties View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-07-27

AUTHORS

Brian P. Thurston, Daniel R. Klenosky, Heath E. Misak, Anupam Vivek, Glenn S. Daehn

ABSTRACT

A technique for producing impact welds with small standoff gaps between dissimilar aluminum alloys, using the Vaporizing Foil Actuator Welding technique, is demonstrated here with the joining of aluminum 6061-T6 to aluminum 7075-T6. One-millimeter-thick AA6061-T6 flyers were welded to a 3-mm thick 7075-T6 target with a nominal standoff gap of just 0.3mm. This small standoff gap is an improvement compared to other impact welding work, allowing for less deformation in the flyer sheet. The welds exhibited remarkable consistency in their failure loads during tensile tests, with nugget pullout mode failure in all samples at failure loads similar to or exceeding those of a comparably sized rivet. Cyclic testing was not as repeatable as the static testing. While the method adopted here requires bare metal surfaces for welding, the process can make joints without damage to nearby coated surfaces. A geometric model is proposed to help explain how sufficient impact angles are generated over standoff distances of 0.3mm or less. The model agrees well with the morphology of the welded and unwelded areas produced in this work and may be useful for predicting impact angles as a function of the standoff distance and the shape of the foil actuator used to launch the flyer to high impact speeds. More... »

PAGES

1-14

References to SciGraph publications

  • 1967-12. Effect of the initial parameters on the process of wave formation in explosive welding in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 2017-02-07. Refill Friction Stir Spot Joining for Aerospace Aluminum Alloys in FRICTION STIR WELDING AND PROCESSING IX
  • 2019-04. Joining Performance and Microstructure of the 2024/7075 Aluminium Alloys Welded Joints by Vaporizing Foil Actuator Welding in JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATER. SCI. ED.
  • 2019-08-05. Vaporizing foil actuator welding in MRS BULLETIN
  • 1983. Mechanics of Explosive Welding in EXPLOSIVE WELDING, FORMING AND COMPACTION
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11665-022-07159-8

    DOI

    http://dx.doi.org/10.1007/s11665-022-07159-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1149794681


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Manufacturing Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "The Ohio State University, Columbus, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.261331.4", 
              "name": [
                "The Ohio State University, Columbus, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Thurston", 
            "givenName": "Brian P.", 
            "id": "sg:person.010161407107.99", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010161407107.99"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Spirit AeroSystems Inc, Wichita, KS, USA", 
              "id": "http://www.grid.ac/institutes/grid.467592.b", 
              "name": [
                "Spirit AeroSystems Inc, Wichita, KS, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Klenosky", 
            "givenName": "Daniel R.", 
            "id": "sg:person.07615432544.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07615432544.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Spirit AeroSystems Inc, Wichita, KS, USA", 
              "id": "http://www.grid.ac/institutes/grid.467592.b", 
              "name": [
                "Spirit AeroSystems Inc, Wichita, KS, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Misak", 
            "givenName": "Heath E.", 
            "id": "sg:person.011276320243.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276320243.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Ohio State University, Columbus, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.261331.4", 
              "name": [
                "The Ohio State University, Columbus, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Vivek", 
            "givenName": "Anupam", 
            "id": "sg:person.01101507033.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101507033.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "The Ohio State University, Columbus, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.261331.4", 
              "name": [
                "The Ohio State University, Columbus, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Daehn", 
            "givenName": "Glenn S.", 
            "id": "sg:person.07467405775.83", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07467405775.83"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-3-319-52383-5_23", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083695271", 
              "https://doi.org/10.1007/978-3-319-52383-5_23"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-94-011-9751-9_6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005536842", 
              "https://doi.org/10.1007/978-94-011-9751-9_6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00741684", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031914172", 
              "https://doi.org/10.1007/bf00741684"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1557/mrs.2019.184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1120129768", 
              "https://doi.org/10.1557/mrs.2019.184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11595-019-2061-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1113856820", 
              "https://doi.org/10.1007/s11595-019-2061-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-07-27", 
        "datePublishedReg": "2022-07-27", 
        "description": "A technique for producing impact welds with small standoff gaps between dissimilar aluminum alloys, using the Vaporizing Foil Actuator Welding technique, is demonstrated here with the joining of aluminum 6061-T6 to aluminum 7075-T6. One-millimeter-thick AA6061-T6 flyers were welded to a 3-mm thick 7075-T6 target with a nominal standoff gap of just 0.3mm. This small standoff gap is an improvement compared to other impact welding work, allowing for less deformation in the flyer sheet. The welds exhibited remarkable consistency in their failure loads during tensile tests, with nugget pullout mode failure in all samples at failure loads similar to or exceeding those of a comparably sized rivet. Cyclic testing was not as repeatable as the static testing. While the method adopted here requires bare metal surfaces for welding, the process can make joints without damage to nearby coated surfaces. A geometric model is proposed to help explain how sufficient impact angles are generated over standoff distances of 0.3mm or less. The model agrees well with the morphology of the welded and unwelded areas produced in this work and may be useful for predicting impact angles as a function of the standoff distance and the shape of the foil actuator used to launch the flyer to high impact speeds.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11665-022-07159-8", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042007", 
            "issn": [
              "1059-9495", 
              "1544-1024"
            ], 
            "name": "Journal of Materials Engineering and Performance", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }
        ], 
        "keywords": [
          "aluminum alloy", 
          "failure load", 
          "standoff distance", 
          "high-strength aluminum alloys", 
          "impact angle", 
          "dissimilar aluminum alloys", 
          "joining of aluminum", 
          "higher impact speeds", 
          "impact welds", 
          "flyer sheet", 
          "unwelded areas", 
          "impact welding", 
          "foil actuator", 
          "welding technique", 
          "bare metal surface", 
          "tensile tests", 
          "cyclic testing", 
          "coated surface", 
          "less deformation", 
          "static testing", 
          "impact speed", 
          "welding work", 
          "mode failure", 
          "welds", 
          "welding", 
          "alloy", 
          "metal surface", 
          "geometric model", 
          "load", 
          "AA6061", 
          "surface", 
          "actuators", 
          "rivets", 
          "deformation", 
          "angle", 
          "aluminum", 
          "joining", 
          "speed", 
          "sheets", 
          "flyers", 
          "technique", 
          "process", 
          "joints", 
          "work", 
          "properties", 
          "model", 
          "morphology", 
          "testing", 
          "gap", 
          "shape", 
          "distance", 
          "method", 
          "test", 
          "improvement", 
          "failure", 
          "damage", 
          "area", 
          "samples", 
          "remarkable consistency", 
          "function", 
          "consistency", 
          "target"
        ], 
        "name": "Small-Scale Impact Welding of High-Strength Aluminum Alloys: Process and Properties", 
        "pagination": "1-14", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1149794681"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11665-022-07159-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11665-022-07159-8", 
          "https://app.dimensions.ai/details/publication/pub.1149794681"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-09-02T16:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220902/entities/gbq_results/article/article_939.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11665-022-07159-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-022-07159-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-022-07159-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-022-07159-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-022-07159-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    164 TRIPLES      21 PREDICATES      89 URIs      76 LITERALS      4 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11665-022-07159-8 schema:about anzsrc-for:09
    2 anzsrc-for:0910
    3 schema:author N90aea25df48447d1b464666357685bd0
    4 schema:citation sg:pub.10.1007/978-3-319-52383-5_23
    5 sg:pub.10.1007/978-94-011-9751-9_6
    6 sg:pub.10.1007/bf00741684
    7 sg:pub.10.1007/s11595-019-2061-7
    8 sg:pub.10.1557/mrs.2019.184
    9 schema:datePublished 2022-07-27
    10 schema:datePublishedReg 2022-07-27
    11 schema:description A technique for producing impact welds with small standoff gaps between dissimilar aluminum alloys, using the Vaporizing Foil Actuator Welding technique, is demonstrated here with the joining of aluminum 6061-T6 to aluminum 7075-T6. One-millimeter-thick AA6061-T6 flyers were welded to a 3-mm thick 7075-T6 target with a nominal standoff gap of just 0.3mm. This small standoff gap is an improvement compared to other impact welding work, allowing for less deformation in the flyer sheet. The welds exhibited remarkable consistency in their failure loads during tensile tests, with nugget pullout mode failure in all samples at failure loads similar to or exceeding those of a comparably sized rivet. Cyclic testing was not as repeatable as the static testing. While the method adopted here requires bare metal surfaces for welding, the process can make joints without damage to nearby coated surfaces. A geometric model is proposed to help explain how sufficient impact angles are generated over standoff distances of 0.3mm or less. The model agrees well with the morphology of the welded and unwelded areas produced in this work and may be useful for predicting impact angles as a function of the standoff distance and the shape of the foil actuator used to launch the flyer to high impact speeds.
    12 schema:genre article
    13 schema:isAccessibleForFree false
    14 schema:isPartOf sg:journal.1042007
    15 schema:keywords AA6061
    16 actuators
    17 alloy
    18 aluminum
    19 aluminum alloy
    20 angle
    21 area
    22 bare metal surface
    23 coated surface
    24 consistency
    25 cyclic testing
    26 damage
    27 deformation
    28 dissimilar aluminum alloys
    29 distance
    30 failure
    31 failure load
    32 flyer sheet
    33 flyers
    34 foil actuator
    35 function
    36 gap
    37 geometric model
    38 high-strength aluminum alloys
    39 higher impact speeds
    40 impact angle
    41 impact speed
    42 impact welding
    43 impact welds
    44 improvement
    45 joining
    46 joining of aluminum
    47 joints
    48 less deformation
    49 load
    50 metal surface
    51 method
    52 mode failure
    53 model
    54 morphology
    55 process
    56 properties
    57 remarkable consistency
    58 rivets
    59 samples
    60 shape
    61 sheets
    62 speed
    63 standoff distance
    64 static testing
    65 surface
    66 target
    67 technique
    68 tensile tests
    69 test
    70 testing
    71 unwelded areas
    72 welding
    73 welding technique
    74 welding work
    75 welds
    76 work
    77 schema:name Small-Scale Impact Welding of High-Strength Aluminum Alloys: Process and Properties
    78 schema:pagination 1-14
    79 schema:productId Nd6f7542a3eaf4db4b638d8a37fc90b90
    80 Nf33473e6da9447fa960b52ebf3ec869b
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1149794681
    82 https://doi.org/10.1007/s11665-022-07159-8
    83 schema:sdDatePublished 2022-09-02T16:06
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher N460bf668bcd049a4a7706f85830da4a5
    86 schema:url https://doi.org/10.1007/s11665-022-07159-8
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N07b52116c0da45038e7ffd3a832ddbb6 rdf:first sg:person.01101507033.26
    91 rdf:rest N7d55f1e63eed491ca220eb5c3a61134e
    92 N460bf668bcd049a4a7706f85830da4a5 schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 N7d55f1e63eed491ca220eb5c3a61134e rdf:first sg:person.07467405775.83
    95 rdf:rest rdf:nil
    96 N7dbcd363551b4f488f561febfad16e57 rdf:first sg:person.011276320243.66
    97 rdf:rest N07b52116c0da45038e7ffd3a832ddbb6
    98 N90aea25df48447d1b464666357685bd0 rdf:first sg:person.010161407107.99
    99 rdf:rest Nb294abf761fc4032b4b929661d2ab8ed
    100 Nb294abf761fc4032b4b929661d2ab8ed rdf:first sg:person.07615432544.19
    101 rdf:rest N7dbcd363551b4f488f561febfad16e57
    102 Nd6f7542a3eaf4db4b638d8a37fc90b90 schema:name doi
    103 schema:value 10.1007/s11665-022-07159-8
    104 rdf:type schema:PropertyValue
    105 Nf33473e6da9447fa960b52ebf3ec869b schema:name dimensions_id
    106 schema:value pub.1149794681
    107 rdf:type schema:PropertyValue
    108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Engineering
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Manufacturing Engineering
    113 rdf:type schema:DefinedTerm
    114 sg:journal.1042007 schema:issn 1059-9495
    115 1544-1024
    116 schema:name Journal of Materials Engineering and Performance
    117 schema:publisher Springer Nature
    118 rdf:type schema:Periodical
    119 sg:person.010161407107.99 schema:affiliation grid-institutes:grid.261331.4
    120 schema:familyName Thurston
    121 schema:givenName Brian P.
    122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010161407107.99
    123 rdf:type schema:Person
    124 sg:person.01101507033.26 schema:affiliation grid-institutes:grid.261331.4
    125 schema:familyName Vivek
    126 schema:givenName Anupam
    127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01101507033.26
    128 rdf:type schema:Person
    129 sg:person.011276320243.66 schema:affiliation grid-institutes:grid.467592.b
    130 schema:familyName Misak
    131 schema:givenName Heath E.
    132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276320243.66
    133 rdf:type schema:Person
    134 sg:person.07467405775.83 schema:affiliation grid-institutes:grid.261331.4
    135 schema:familyName Daehn
    136 schema:givenName Glenn S.
    137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07467405775.83
    138 rdf:type schema:Person
    139 sg:person.07615432544.19 schema:affiliation grid-institutes:grid.467592.b
    140 schema:familyName Klenosky
    141 schema:givenName Daniel R.
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07615432544.19
    143 rdf:type schema:Person
    144 sg:pub.10.1007/978-3-319-52383-5_23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083695271
    145 https://doi.org/10.1007/978-3-319-52383-5_23
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1007/978-94-011-9751-9_6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005536842
    148 https://doi.org/10.1007/978-94-011-9751-9_6
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.1007/bf00741684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031914172
    151 https://doi.org/10.1007/bf00741684
    152 rdf:type schema:CreativeWork
    153 sg:pub.10.1007/s11595-019-2061-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1113856820
    154 https://doi.org/10.1007/s11595-019-2061-7
    155 rdf:type schema:CreativeWork
    156 sg:pub.10.1557/mrs.2019.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1120129768
    157 https://doi.org/10.1557/mrs.2019.184
    158 rdf:type schema:CreativeWork
    159 grid-institutes:grid.261331.4 schema:alternateName The Ohio State University, Columbus, OH, USA
    160 schema:name The Ohio State University, Columbus, OH, USA
    161 rdf:type schema:Organization
    162 grid-institutes:grid.467592.b schema:alternateName Spirit AeroSystems Inc, Wichita, KS, USA
    163 schema:name Spirit AeroSystems Inc, Wichita, KS, USA
    164 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...