Modeling the Failure Behavior of Self-Piercing Riveting Joints of 6xxx Aluminum Alloy View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2020-06-23

AUTHORS

Florian Hönsch, Josef Domitner, Christof Sommitsch, Bruno Götzinger

ABSTRACT

Self-piercing riveting (SPR) is a mechanical joining process which is applied for joining similar and dissimilar lightweight materials in modern car body manufacturing. For qualifying SPR joints, cross sections must be investigated with respect to predefined quality features. Thus, numerous tests must be carried out in order to determine the maximum load capacity of SPR joints for different load angles. The growing number of materials used for the body-in-white requires a reliable and time efficient routine for predicting the joining behavior and the load capacity of SPR joints. In this study, the load capacity of three SPR joints was investigated numerically and experimentally using so-called KS2 samples. The results of axisymmetric two-dimensional finite element simulations (Hönsch et al in J Phys Conf Ser 1063:1-6, 2018) are the basis for three-dimensional simulations of the destructive testing procedure. The experimental setup of destructive testing was modeled using the FE software Simufact Forming 15. The numerically determined load capacity was validated with experimental data. Comparing the failure modes and the force–displacement curves revealed good agreement of simulations and experiments. Therefore, the presented simulation is a powerful tool for predicting the behavior of SPR joints under different load cases. More... »

PAGES

4888-4897

References to SciGraph publications

  • 2014-04-08. Innovative and Highly Productive Joining Technologies for Multi-Material Lightweight Car Body Structures in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 2017-02-01. Mechanical and fatigue properties of self-piercing riveted joints in high-strength steel and aluminium alloy in JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL
  • 2018-01. Quality of self-piercing riveting (SPR) joints from cross-sectional perspective: A review in ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING
  • 2017-03-20. Self-piercing riveting-a review in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11665-020-04894-8

    DOI

    http://dx.doi.org/10.1007/s11665-020-04894-8

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1128713300


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Manufacturing Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Magna Steyr Fahrzeugtechnik AG & Co KG, 8041, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.425393.a", 
              "name": [
                "Research Group of Tools and Forming, Institute of Materials Science, Joining and Forming, Graz University of Technology, 8010, Graz, Austria", 
                "Magna Steyr Fahrzeugtechnik AG & Co KG, 8041, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "H\u00f6nsch", 
            "givenName": "Florian", 
            "id": "sg:person.016173306160.66", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016173306160.66"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research Group of Tools and Forming, Institute of Materials Science, Joining and Forming, Graz University of Technology, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Research Group of Tools and Forming, Institute of Materials Science, Joining and Forming, Graz University of Technology, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Domitner", 
            "givenName": "Josef", 
            "id": "sg:person.013034541675.38", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013034541675.38"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Research Group of Tools and Forming, Institute of Materials Science, Joining and Forming, Graz University of Technology, 8010, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.410413.3", 
              "name": [
                "Research Group of Tools and Forming, Institute of Materials Science, Joining and Forming, Graz University of Technology, 8010, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sommitsch", 
            "givenName": "Christof", 
            "id": "sg:person.010477425273.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010477425273.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Magna Steyr Fahrzeugtechnik AG & Co KG, 8041, Graz, Austria", 
              "id": "http://www.grid.ac/institutes/grid.425393.a", 
              "name": [
                "Magna Steyr Fahrzeugtechnik AG & Co KG, 8041, Graz, Austria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "G\u00f6tzinger", 
            "givenName": "Bruno", 
            "id": "sg:person.010307235735.39", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010307235735.39"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s00170-017-0156-x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1084694719", 
              "https://doi.org/10.1007/s00170-017-0156-x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/j.acme.2017.06.003", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1090680210", 
              "https://doi.org/10.1016/j.acme.2017.06.003"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1016/s1006-706x(17)30030-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1083864605", 
              "https://doi.org/10.1016/s1006-706x(17)30030-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-014-0962-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004405551", 
              "https://doi.org/10.1007/s11665-014-0962-3"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2020-06-23", 
        "datePublishedReg": "2020-06-23", 
        "description": "Self-piercing riveting (SPR) is a mechanical joining process which is applied for joining similar and dissimilar lightweight materials in modern car body manufacturing. For qualifying SPR joints, cross sections must be investigated with respect to predefined quality features. Thus, numerous tests must be carried out in order to determine the maximum load capacity of SPR joints for different load angles. The growing number of materials used for the body-in-white requires a reliable and time efficient routine for predicting the joining behavior and the load capacity of SPR joints. In this study, the load capacity of three SPR joints was investigated numerically and experimentally using so-called KS2 samples. The results of axisymmetric two-dimensional finite element simulations (H\u00f6nsch et al in J Phys Conf Ser 1063:1-6, 2018) are the basis for three-dimensional simulations of the destructive testing procedure. The experimental setup of destructive testing was modeled using the FE software Simufact Forming 15. The numerically determined load capacity was validated with experimental data. Comparing the failure modes and the force\u2013displacement curves revealed good agreement of simulations and experiments. Therefore, the presented simulation is a powerful tool for predicting the behavior of SPR joints under different load cases.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11665-020-04894-8", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1042007", 
            "issn": [
              "1059-9495", 
              "1544-1024"
            ], 
            "name": "Journal of Materials Engineering and Performance", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "29"
          }
        ], 
        "keywords": [
          "SPR joints", 
          "load capacity", 
          "two-dimensional finite element simulations", 
          "dissimilar lightweight materials", 
          "car body manufacturing", 
          "different load angles", 
          "mechanical joining processes", 
          "finite element simulations", 
          "different load cases", 
          "maximum load capacity", 
          "force-displacement curves", 
          "three-dimensional simulations", 
          "destructive testing procedure", 
          "riveting joints", 
          "joining process", 
          "lightweight materials", 
          "body manufacturing", 
          "aluminum alloy", 
          "element simulations", 
          "failure behavior", 
          "load cases", 
          "failure modes", 
          "load angle", 
          "destructive testing", 
          "number of materials", 
          "experimental setup", 
          "experimental data", 
          "simulations", 
          "good agreement", 
          "joints", 
          "numerous tests", 
          "materials", 
          "alloy", 
          "testing procedures", 
          "quality features", 
          "manufacturing", 
          "behavior", 
          "capacity", 
          "setup", 
          "angle", 
          "cross sections", 
          "mode", 
          "efficient routine", 
          "powerful tool", 
          "agreement", 
          "process", 
          "experiments", 
          "curves", 
          "order", 
          "test", 
          "testing", 
          "results", 
          "respect", 
          "sections", 
          "procedure", 
          "tool", 
          "samples", 
          "features", 
          "body", 
          "basis", 
          "number", 
          "routines", 
          "data", 
          "cases", 
          "study", 
          "whites"
        ], 
        "name": "Modeling the Failure Behavior of Self-Piercing Riveting Joints of 6xxx Aluminum Alloy", 
        "pagination": "4888-4897", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1128713300"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11665-020-04894-8"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11665-020-04894-8", 
          "https://app.dimensions.ai/details/publication/pub.1128713300"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:40", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_843.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11665-020-04894-8"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-020-04894-8'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-020-04894-8'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-020-04894-8'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-020-04894-8'


     

    This table displays all metadata directly associated to this object as RDF triples.

    164 TRIPLES      21 PREDICATES      94 URIs      82 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11665-020-04894-8 schema:about anzsrc-for:09
    2 anzsrc-for:0910
    3 schema:author N02aa4c9df33a448188a0de1dfb794077
    4 schema:citation sg:pub.10.1007/s00170-017-0156-x
    5 sg:pub.10.1007/s11665-014-0962-3
    6 sg:pub.10.1016/j.acme.2017.06.003
    7 sg:pub.10.1016/s1006-706x(17)30030-4
    8 schema:datePublished 2020-06-23
    9 schema:datePublishedReg 2020-06-23
    10 schema:description Self-piercing riveting (SPR) is a mechanical joining process which is applied for joining similar and dissimilar lightweight materials in modern car body manufacturing. For qualifying SPR joints, cross sections must be investigated with respect to predefined quality features. Thus, numerous tests must be carried out in order to determine the maximum load capacity of SPR joints for different load angles. The growing number of materials used for the body-in-white requires a reliable and time efficient routine for predicting the joining behavior and the load capacity of SPR joints. In this study, the load capacity of three SPR joints was investigated numerically and experimentally using so-called KS2 samples. The results of axisymmetric two-dimensional finite element simulations (Hönsch et al in J Phys Conf Ser 1063:1-6, 2018) are the basis for three-dimensional simulations of the destructive testing procedure. The experimental setup of destructive testing was modeled using the FE software Simufact Forming 15. The numerically determined load capacity was validated with experimental data. Comparing the failure modes and the force–displacement curves revealed good agreement of simulations and experiments. Therefore, the presented simulation is a powerful tool for predicting the behavior of SPR joints under different load cases.
    11 schema:genre article
    12 schema:isAccessibleForFree true
    13 schema:isPartOf N049c4c2d0a804b15acc63224bdcb3bbf
    14 Nf2153c5bc7d346ba8fe6eedd30432cb5
    15 sg:journal.1042007
    16 schema:keywords SPR joints
    17 agreement
    18 alloy
    19 aluminum alloy
    20 angle
    21 basis
    22 behavior
    23 body
    24 body manufacturing
    25 capacity
    26 car body manufacturing
    27 cases
    28 cross sections
    29 curves
    30 data
    31 destructive testing
    32 destructive testing procedure
    33 different load angles
    34 different load cases
    35 dissimilar lightweight materials
    36 efficient routine
    37 element simulations
    38 experimental data
    39 experimental setup
    40 experiments
    41 failure behavior
    42 failure modes
    43 features
    44 finite element simulations
    45 force-displacement curves
    46 good agreement
    47 joining process
    48 joints
    49 lightweight materials
    50 load angle
    51 load capacity
    52 load cases
    53 manufacturing
    54 materials
    55 maximum load capacity
    56 mechanical joining processes
    57 mode
    58 number
    59 number of materials
    60 numerous tests
    61 order
    62 powerful tool
    63 procedure
    64 process
    65 quality features
    66 respect
    67 results
    68 riveting joints
    69 routines
    70 samples
    71 sections
    72 setup
    73 simulations
    74 study
    75 test
    76 testing
    77 testing procedures
    78 three-dimensional simulations
    79 tool
    80 two-dimensional finite element simulations
    81 whites
    82 schema:name Modeling the Failure Behavior of Self-Piercing Riveting Joints of 6xxx Aluminum Alloy
    83 schema:pagination 4888-4897
    84 schema:productId N1a84e57885864db5ad57815d0d4f5016
    85 Nedf526e86a954863b7483bfd04b91786
    86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1128713300
    87 https://doi.org/10.1007/s11665-020-04894-8
    88 schema:sdDatePublished 2022-12-01T06:40
    89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    90 schema:sdPublisher N731495a1015a498db84a0055d254bcb0
    91 schema:url https://doi.org/10.1007/s11665-020-04894-8
    92 sgo:license sg:explorer/license/
    93 sgo:sdDataset articles
    94 rdf:type schema:ScholarlyArticle
    95 N02aa4c9df33a448188a0de1dfb794077 rdf:first sg:person.016173306160.66
    96 rdf:rest N18784725499f43ff90698e972675acce
    97 N049c4c2d0a804b15acc63224bdcb3bbf schema:volumeNumber 29
    98 rdf:type schema:PublicationVolume
    99 N18784725499f43ff90698e972675acce rdf:first sg:person.013034541675.38
    100 rdf:rest Na06664963de048c3a2075804363f528b
    101 N1a84e57885864db5ad57815d0d4f5016 schema:name doi
    102 schema:value 10.1007/s11665-020-04894-8
    103 rdf:type schema:PropertyValue
    104 N5cfa921251b847dd8374e4c1284e804c rdf:first sg:person.010307235735.39
    105 rdf:rest rdf:nil
    106 N731495a1015a498db84a0055d254bcb0 schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 Na06664963de048c3a2075804363f528b rdf:first sg:person.010477425273.00
    109 rdf:rest N5cfa921251b847dd8374e4c1284e804c
    110 Nedf526e86a954863b7483bfd04b91786 schema:name dimensions_id
    111 schema:value pub.1128713300
    112 rdf:type schema:PropertyValue
    113 Nf2153c5bc7d346ba8fe6eedd30432cb5 schema:issueNumber 8
    114 rdf:type schema:PublicationIssue
    115 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    116 schema:name Engineering
    117 rdf:type schema:DefinedTerm
    118 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
    119 schema:name Manufacturing Engineering
    120 rdf:type schema:DefinedTerm
    121 sg:journal.1042007 schema:issn 1059-9495
    122 1544-1024
    123 schema:name Journal of Materials Engineering and Performance
    124 schema:publisher Springer Nature
    125 rdf:type schema:Periodical
    126 sg:person.010307235735.39 schema:affiliation grid-institutes:grid.425393.a
    127 schema:familyName Götzinger
    128 schema:givenName Bruno
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010307235735.39
    130 rdf:type schema:Person
    131 sg:person.010477425273.00 schema:affiliation grid-institutes:grid.410413.3
    132 schema:familyName Sommitsch
    133 schema:givenName Christof
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010477425273.00
    135 rdf:type schema:Person
    136 sg:person.013034541675.38 schema:affiliation grid-institutes:grid.410413.3
    137 schema:familyName Domitner
    138 schema:givenName Josef
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013034541675.38
    140 rdf:type schema:Person
    141 sg:person.016173306160.66 schema:affiliation grid-institutes:grid.425393.a
    142 schema:familyName Hönsch
    143 schema:givenName Florian
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016173306160.66
    145 rdf:type schema:Person
    146 sg:pub.10.1007/s00170-017-0156-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1084694719
    147 https://doi.org/10.1007/s00170-017-0156-x
    148 rdf:type schema:CreativeWork
    149 sg:pub.10.1007/s11665-014-0962-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004405551
    150 https://doi.org/10.1007/s11665-014-0962-3
    151 rdf:type schema:CreativeWork
    152 sg:pub.10.1016/j.acme.2017.06.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090680210
    153 https://doi.org/10.1016/j.acme.2017.06.003
    154 rdf:type schema:CreativeWork
    155 sg:pub.10.1016/s1006-706x(17)30030-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083864605
    156 https://doi.org/10.1016/s1006-706x(17)30030-4
    157 rdf:type schema:CreativeWork
    158 grid-institutes:grid.410413.3 schema:alternateName Research Group of Tools and Forming, Institute of Materials Science, Joining and Forming, Graz University of Technology, 8010, Graz, Austria
    159 schema:name Research Group of Tools and Forming, Institute of Materials Science, Joining and Forming, Graz University of Technology, 8010, Graz, Austria
    160 rdf:type schema:Organization
    161 grid-institutes:grid.425393.a schema:alternateName Magna Steyr Fahrzeugtechnik AG & Co KG, 8041, Graz, Austria
    162 schema:name Magna Steyr Fahrzeugtechnik AG & Co KG, 8041, Graz, Austria
    163 Research Group of Tools and Forming, Institute of Materials Science, Joining and Forming, Graz University of Technology, 8010, Graz, Austria
    164 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...