Corrosion Behavior of Laser-Brazed Surface Made by Joining of AA6082 and Galvanized Steel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03-07

AUTHORS

D. Narsimhachary, P. K. Rai, S. M. Shariff, G. Padmanabham, K. Mondal, A. Basu

ABSTRACT

In the present study, a galvanized steel and a AA6082 aluminum alloy sheet of 2 mm thick were weld-brazed by applying laser and using 2-mm-diameter solid Al-12% Si filler wire at 2.5 m/min wire feed rate and 2 m/min laser scan speed at varying laser power (4.0, 3.5, 3.0 kW) in flange configuration. The microstructural investigation of the laser weld-brazed joints revealed the presence of two-layered intermetallic compound at steel/braze seam interface. The corresponding x-ray diffraction analysis of the steel/braze seam interface showed the presence of Al-Fe-Si-based ternary intermetallic phases. SEM and EDS analysis of the braze seam revealed the presence of α-Al grains surrounded by Mg2Si phase in the grain boundary region. Fine intermetallic layer was observed at lower heat-input condition. The corrosion performance of the brazed joints was studied with the help of immersion, salt spray, and electrochemical polarization tests in different electrolytes containing NaCl salt. Brazed joints experienced galvanic corrosion during immersed in corrosive media. From the salt spray test, it was revealed that galvanized steel was highly susceptible to corrosion compared to Al-rich phase. The polarization results showed a substantial change in corrosion resistance from steel interface to the brazed region due to the variation in microstructure. The samples brazed with low heat-input showed better corrosion resistance as compared to the joints made with high heat-input. Post-corrosion microstructure revealed intergranular corrosion at the brazed joint along with pit formation. More... »

PAGES

1-13

References to SciGraph publications

  • 2016-12. Corrosion Behavior of MIG Brazed and MIG Welded Joints of Automotive DP600-GI Steel Sheet in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 2004-08. Laser welding of aluminium alloys and dissimilar metals in WELDING INTERNATIONAL
  • 2008-06. Study of influencing factors and joint performance of laser brazing on zinc-coated steel plate in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2016-05. Corrosion Behavior of Aluminum-Steel Weld-Brazing Joint in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 2001-08. Automobile bodies: Can aluminum be an economical alternative to steel? in JOM
  • 2010-04. Wetting and laser brazing of Zn-coated steel products by Cu–Si filler metal in JOURNAL OF MATERIALS SCIENCE
  • 2007-06. Intermetallic FexAly-phases in a steel/Al-alloy fusion weld in JOURNAL OF MATERIALS SCIENCE
  • 2017-09. AA6082 to DX56-Steel Laser Brazing: Process Parameter–Intermetallic Formation Correlation in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11665-019-03962-y

    DOI

    http://dx.doi.org/10.1007/s11665-019-03962-y

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112609478


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "Department of Metallurgical and Materials Engineering, National Institute of Technology, 769008, Rourkela, Odisha, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Narsimhachary", 
            "givenName": "D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute of Technology Kanpur", 
              "id": "https://www.grid.ac/institutes/grid.417965.8", 
              "name": [
                "Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, UP, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rai", 
            "givenName": "P. K.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Advanced Research Centre for Powder Metallurgy and New Materials", 
              "id": "https://www.grid.ac/institutes/grid.466869.3", 
              "name": [
                "International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500005, Hyderabad, Telangana, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Shariff", 
            "givenName": "S. M.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "International Advanced Research Centre for Powder Metallurgy and New Materials", 
              "id": "https://www.grid.ac/institutes/grid.466869.3", 
              "name": [
                "International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500005, Hyderabad, Telangana, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Padmanabham", 
            "givenName": "G.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Indian Institute of Technology Kanpur", 
              "id": "https://www.grid.ac/institutes/grid.417965.8", 
              "name": [
                "Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, UP, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mondal", 
            "givenName": "K.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Department of Metallurgical and Materials Engineering, National Institute of Technology, 769008, Rourkela, Odisha, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Basu", 
            "givenName": "A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.matdes.2009.12.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003448296"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.corsci.2010.05.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1004445363"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2015.05.069", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1006156859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0921-5093(98)00573-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008778277"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11837-001-0131-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009525154", 
              "https://doi.org/10.1007/s11837-001-0131-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0010-938x(98)00039-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014175367"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2013.07.093", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014333511"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.corsci.2011.09.017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015765585"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.optlastec.2013.12.013", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017591466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1149/1.2048447", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019613588"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-009-3949-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020373700", 
              "https://doi.org/10.1007/s10853-009-3949-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-009-3949-y", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020373700", 
              "https://doi.org/10.1007/s10853-009-3949-y"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-016-2020-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020990842", 
              "https://doi.org/10.1007/s11665-016-2020-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/174329305x37051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022822634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1179/174329305x37051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022822634"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.corsci.2006.01.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025887466"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5006/0677", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026094044"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2010.10.050", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031143047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-016-2356-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032907863", 
              "https://doi.org/10.1007/s11665-016-2356-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-016-2356-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032907863", 
              "https://doi.org/10.1007/s11665-016-2356-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.corsci.2007.04.014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034299389"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1533/wint.2004.3315", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034718594", 
              "https://doi.org/10.1533/wint.2004.3315"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.corsci.2009.03.030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039036290"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2016.07.026", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044452510"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-007-1035-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050337920", 
              "https://doi.org/10.1007/s00170-007-1035-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-007-1035-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050337920", 
              "https://doi.org/10.1007/s00170-007-1035-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-006-0644-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051761940", 
              "https://doi.org/10.1007/s10853-006-0644-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1520/stp16249s", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1088504787"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-017-2902-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1091494738", 
              "https://doi.org/10.1007/s11665-017-2902-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmapro.2017.11.007", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1092580132"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.jmatprotec.2018.02.016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101000859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.corsci.2018.04.009", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1103194413"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2019-03-07", 
        "datePublishedReg": "2019-03-07", 
        "description": "In the present study, a galvanized steel and a AA6082 aluminum alloy sheet of 2 mm thick were weld-brazed by applying laser and using 2-mm-diameter solid Al-12% Si filler wire at 2.5 m/min wire feed rate and 2 m/min laser scan speed at varying laser power (4.0, 3.5, 3.0 kW) in flange configuration. The microstructural investigation of the laser weld-brazed joints revealed the presence of two-layered intermetallic compound at steel/braze seam interface. The corresponding x-ray diffraction analysis of the steel/braze seam interface showed the presence of Al-Fe-Si-based ternary intermetallic phases. SEM and EDS analysis of the braze seam revealed the presence of \u03b1-Al grains surrounded by Mg2Si phase in the grain boundary region. Fine intermetallic layer was observed at lower heat-input condition. The corrosion performance of the brazed joints was studied with the help of immersion, salt spray, and electrochemical polarization tests in different electrolytes containing NaCl salt. Brazed joints experienced galvanic corrosion during immersed in corrosive media. From the salt spray test, it was revealed that galvanized steel was highly susceptible to corrosion compared to Al-rich phase. The polarization results showed a substantial change in corrosion resistance from steel interface to the brazed region due to the variation in microstructure. The samples brazed with low heat-input showed better corrosion resistance as compared to the joints made with high heat-input. Post-corrosion microstructure revealed intergranular corrosion at the brazed joint along with pit formation.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11665-019-03962-y", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042007", 
            "issn": [
              "1059-9495", 
              "1544-1024"
            ], 
            "name": "Journal of Materials Engineering and Performance", 
            "type": "Periodical"
          }
        ], 
        "name": "Corrosion Behavior of Laser-Brazed Surface Made by Joining of AA6082 and Galvanized Steel", 
        "pagination": "1-13", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "aa7c653ab0a03207736d6cb5ad35a25c0cee6cac0282d42bdbbe8dfd4c58d2a6"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11665-019-03962-y"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112609478"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11665-019-03962-y", 
          "https://app.dimensions.ai/details/publication/pub.1112609478"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T11:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000354_0000000354/records_11731_00000002.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11665-019-03962-y"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-019-03962-y'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-019-03962-y'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-019-03962-y'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-019-03962-y'


     

    This table displays all metadata directly associated to this object as RDF triples.

    183 TRIPLES      21 PREDICATES      52 URIs      16 LITERALS      5 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11665-019-03962-y schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Ne0e5094e39f3470bb3d827f2b33ea31f
    4 schema:citation sg:pub.10.1007/s00170-007-1035-7
    5 sg:pub.10.1007/s10853-006-0644-0
    6 sg:pub.10.1007/s10853-009-3949-y
    7 sg:pub.10.1007/s11665-016-2020-9
    8 sg:pub.10.1007/s11665-016-2356-1
    9 sg:pub.10.1007/s11665-017-2902-5
    10 sg:pub.10.1007/s11837-001-0131-7
    11 sg:pub.10.1533/wint.2004.3315
    12 https://doi.org/10.1016/j.corsci.2006.01.005
    13 https://doi.org/10.1016/j.corsci.2007.04.014
    14 https://doi.org/10.1016/j.corsci.2009.03.030
    15 https://doi.org/10.1016/j.corsci.2010.05.023
    16 https://doi.org/10.1016/j.corsci.2011.09.017
    17 https://doi.org/10.1016/j.corsci.2018.04.009
    18 https://doi.org/10.1016/j.jmapro.2017.11.007
    19 https://doi.org/10.1016/j.jmatprotec.2016.07.026
    20 https://doi.org/10.1016/j.jmatprotec.2018.02.016
    21 https://doi.org/10.1016/j.matdes.2009.12.010
    22 https://doi.org/10.1016/j.matdes.2013.07.093
    23 https://doi.org/10.1016/j.matdes.2015.05.069
    24 https://doi.org/10.1016/j.msea.2010.10.050
    25 https://doi.org/10.1016/j.optlastec.2013.12.013
    26 https://doi.org/10.1016/s0010-938x(98)00039-0
    27 https://doi.org/10.1016/s0921-5093(98)00573-5
    28 https://doi.org/10.1149/1.2048447
    29 https://doi.org/10.1179/174329305x37051
    30 https://doi.org/10.1520/stp16249s
    31 https://doi.org/10.5006/0677
    32 schema:datePublished 2019-03-07
    33 schema:datePublishedReg 2019-03-07
    34 schema:description In the present study, a galvanized steel and a AA6082 aluminum alloy sheet of 2 mm thick were weld-brazed by applying laser and using 2-mm-diameter solid Al-12% Si filler wire at 2.5 m/min wire feed rate and 2 m/min laser scan speed at varying laser power (4.0, 3.5, 3.0 kW) in flange configuration. The microstructural investigation of the laser weld-brazed joints revealed the presence of two-layered intermetallic compound at steel/braze seam interface. The corresponding x-ray diffraction analysis of the steel/braze seam interface showed the presence of Al-Fe-Si-based ternary intermetallic phases. SEM and EDS analysis of the braze seam revealed the presence of α-Al grains surrounded by Mg2Si phase in the grain boundary region. Fine intermetallic layer was observed at lower heat-input condition. The corrosion performance of the brazed joints was studied with the help of immersion, salt spray, and electrochemical polarization tests in different electrolytes containing NaCl salt. Brazed joints experienced galvanic corrosion during immersed in corrosive media. From the salt spray test, it was revealed that galvanized steel was highly susceptible to corrosion compared to Al-rich phase. The polarization results showed a substantial change in corrosion resistance from steel interface to the brazed region due to the variation in microstructure. The samples brazed with low heat-input showed better corrosion resistance as compared to the joints made with high heat-input. Post-corrosion microstructure revealed intergranular corrosion at the brazed joint along with pit formation.
    35 schema:genre research_article
    36 schema:inLanguage en
    37 schema:isAccessibleForFree false
    38 schema:isPartOf sg:journal.1042007
    39 schema:name Corrosion Behavior of Laser-Brazed Surface Made by Joining of AA6082 and Galvanized Steel
    40 schema:pagination 1-13
    41 schema:productId N0eedd0c130d9489ba3bed4a89a240cb6
    42 N23ce430c6b9344eca093e9e6913ec380
    43 N704e36cefa1749ef911ec8791efea5c9
    44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112609478
    45 https://doi.org/10.1007/s11665-019-03962-y
    46 schema:sdDatePublished 2019-04-11T11:22
    47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    48 schema:sdPublisher Nce94de3dc6c14e64b99e1acd2ddee327
    49 schema:url https://link.springer.com/10.1007%2Fs11665-019-03962-y
    50 sgo:license sg:explorer/license/
    51 sgo:sdDataset articles
    52 rdf:type schema:ScholarlyArticle
    53 N0c1aeed6b20f49a48cc6ad2cd7af76a8 rdf:first Nf3bd981370344c088aae33995203d7c5
    54 rdf:rest Nccbb12ad68f94b0da721292f42460d54
    55 N0eedd0c130d9489ba3bed4a89a240cb6 schema:name dimensions_id
    56 schema:value pub.1112609478
    57 rdf:type schema:PropertyValue
    58 N11449c64c0bf42ffa17eae67eaf660c9 schema:affiliation https://www.grid.ac/institutes/grid.417965.8
    59 schema:familyName Rai
    60 schema:givenName P. K.
    61 rdf:type schema:Person
    62 N23ce430c6b9344eca093e9e6913ec380 schema:name doi
    63 schema:value 10.1007/s11665-019-03962-y
    64 rdf:type schema:PropertyValue
    65 N31d6b60fd6814f87bf046ed7ff10e355 rdf:first N11449c64c0bf42ffa17eae67eaf660c9
    66 rdf:rest N0c1aeed6b20f49a48cc6ad2cd7af76a8
    67 N335469e776174ad68e1652a6c3935cc1 rdf:first N5e32a1b2b87147409385cbfefc5c8f3b
    68 rdf:rest rdf:nil
    69 N455e626cfcbc4590ad8f531fb60e7fbf schema:name Department of Metallurgical and Materials Engineering, National Institute of Technology, 769008, Rourkela, Odisha, India
    70 rdf:type schema:Organization
    71 N5e32a1b2b87147409385cbfefc5c8f3b schema:affiliation N6e95fb3437fd4a8aad68ca95bc281ef4
    72 schema:familyName Basu
    73 schema:givenName A.
    74 rdf:type schema:Person
    75 N6e95fb3437fd4a8aad68ca95bc281ef4 schema:name Department of Metallurgical and Materials Engineering, National Institute of Technology, 769008, Rourkela, Odisha, India
    76 rdf:type schema:Organization
    77 N6f7289ac2c8e494995b4f78f3b72d005 schema:affiliation https://www.grid.ac/institutes/grid.466869.3
    78 schema:familyName Padmanabham
    79 schema:givenName G.
    80 rdf:type schema:Person
    81 N704e36cefa1749ef911ec8791efea5c9 schema:name readcube_id
    82 schema:value aa7c653ab0a03207736d6cb5ad35a25c0cee6cac0282d42bdbbe8dfd4c58d2a6
    83 rdf:type schema:PropertyValue
    84 Nc051a4d94c6e4554ada89db446392992 schema:affiliation N455e626cfcbc4590ad8f531fb60e7fbf
    85 schema:familyName Narsimhachary
    86 schema:givenName D.
    87 rdf:type schema:Person
    88 Nccbb12ad68f94b0da721292f42460d54 rdf:first N6f7289ac2c8e494995b4f78f3b72d005
    89 rdf:rest Ncfdd4fc92f0d42b2a4d3f577b5cfe489
    90 Nce78a984a0614232a2123b5d468a32cf schema:affiliation https://www.grid.ac/institutes/grid.417965.8
    91 schema:familyName Mondal
    92 schema:givenName K.
    93 rdf:type schema:Person
    94 Nce94de3dc6c14e64b99e1acd2ddee327 schema:name Springer Nature - SN SciGraph project
    95 rdf:type schema:Organization
    96 Ncfdd4fc92f0d42b2a4d3f577b5cfe489 rdf:first Nce78a984a0614232a2123b5d468a32cf
    97 rdf:rest N335469e776174ad68e1652a6c3935cc1
    98 Ne0e5094e39f3470bb3d827f2b33ea31f rdf:first Nc051a4d94c6e4554ada89db446392992
    99 rdf:rest N31d6b60fd6814f87bf046ed7ff10e355
    100 Nf3bd981370344c088aae33995203d7c5 schema:affiliation https://www.grid.ac/institutes/grid.466869.3
    101 schema:familyName Shariff
    102 schema:givenName S. M.
    103 rdf:type schema:Person
    104 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    105 schema:name Engineering
    106 rdf:type schema:DefinedTerm
    107 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    108 schema:name Materials Engineering
    109 rdf:type schema:DefinedTerm
    110 sg:journal.1042007 schema:issn 1059-9495
    111 1544-1024
    112 schema:name Journal of Materials Engineering and Performance
    113 rdf:type schema:Periodical
    114 sg:pub.10.1007/s00170-007-1035-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050337920
    115 https://doi.org/10.1007/s00170-007-1035-7
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s10853-006-0644-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051761940
    118 https://doi.org/10.1007/s10853-006-0644-0
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1007/s10853-009-3949-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1020373700
    121 https://doi.org/10.1007/s10853-009-3949-y
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1007/s11665-016-2020-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020990842
    124 https://doi.org/10.1007/s11665-016-2020-9
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s11665-016-2356-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032907863
    127 https://doi.org/10.1007/s11665-016-2356-1
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s11665-017-2902-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091494738
    130 https://doi.org/10.1007/s11665-017-2902-5
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s11837-001-0131-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009525154
    133 https://doi.org/10.1007/s11837-001-0131-7
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1533/wint.2004.3315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034718594
    136 https://doi.org/10.1533/wint.2004.3315
    137 rdf:type schema:CreativeWork
    138 https://doi.org/10.1016/j.corsci.2006.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025887466
    139 rdf:type schema:CreativeWork
    140 https://doi.org/10.1016/j.corsci.2007.04.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034299389
    141 rdf:type schema:CreativeWork
    142 https://doi.org/10.1016/j.corsci.2009.03.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039036290
    143 rdf:type schema:CreativeWork
    144 https://doi.org/10.1016/j.corsci.2010.05.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004445363
    145 rdf:type schema:CreativeWork
    146 https://doi.org/10.1016/j.corsci.2011.09.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015765585
    147 rdf:type schema:CreativeWork
    148 https://doi.org/10.1016/j.corsci.2018.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103194413
    149 rdf:type schema:CreativeWork
    150 https://doi.org/10.1016/j.jmapro.2017.11.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092580132
    151 rdf:type schema:CreativeWork
    152 https://doi.org/10.1016/j.jmatprotec.2016.07.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044452510
    153 rdf:type schema:CreativeWork
    154 https://doi.org/10.1016/j.jmatprotec.2018.02.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101000859
    155 rdf:type schema:CreativeWork
    156 https://doi.org/10.1016/j.matdes.2009.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003448296
    157 rdf:type schema:CreativeWork
    158 https://doi.org/10.1016/j.matdes.2013.07.093 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014333511
    159 rdf:type schema:CreativeWork
    160 https://doi.org/10.1016/j.matdes.2015.05.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006156859
    161 rdf:type schema:CreativeWork
    162 https://doi.org/10.1016/j.msea.2010.10.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031143047
    163 rdf:type schema:CreativeWork
    164 https://doi.org/10.1016/j.optlastec.2013.12.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017591466
    165 rdf:type schema:CreativeWork
    166 https://doi.org/10.1016/s0010-938x(98)00039-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014175367
    167 rdf:type schema:CreativeWork
    168 https://doi.org/10.1016/s0921-5093(98)00573-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008778277
    169 rdf:type schema:CreativeWork
    170 https://doi.org/10.1149/1.2048447 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019613588
    171 rdf:type schema:CreativeWork
    172 https://doi.org/10.1179/174329305x37051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022822634
    173 rdf:type schema:CreativeWork
    174 https://doi.org/10.1520/stp16249s schema:sameAs https://app.dimensions.ai/details/publication/pub.1088504787
    175 rdf:type schema:CreativeWork
    176 https://doi.org/10.5006/0677 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026094044
    177 rdf:type schema:CreativeWork
    178 https://www.grid.ac/institutes/grid.417965.8 schema:alternateName Indian Institute of Technology Kanpur
    179 schema:name Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, 208016, Kanpur, UP, India
    180 rdf:type schema:Organization
    181 https://www.grid.ac/institutes/grid.466869.3 schema:alternateName International Advanced Research Centre for Powder Metallurgy and New Materials
    182 schema:name International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), 500005, Hyderabad, Telangana, India
    183 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...