Understanding Microstructural Evolution During Rapid Heat Treatment of Microalloyed Steels Through Computational Modeling, Advanced Physical Simulation, and Multiscale Characterization Techniques View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

B. M. Whitley, J. G. Speer, R. Cryderman, J. Klemm-Toole

ABSTRACT

An AISI 1045 steel modified with vanadium (V) and niobium (Nb) was studied to evaluate microstructural conditioning prior to and throughout a rapid heat treat process. In order to accomplish this, both computational and physical simulation techniques have been employed with the goal of assessing the microstructural evolution in a medium-carbon bar steel during the rapid austenitization and quenching procedures involved in an induction hardening process. The appropriate thermal profiles for induction hardening were obtained through finite element modeling using Flux 2D software. Physical simulations of the induction hardening process were carried out using a Gleeble® 3500. Analysis of prior austenite grain size is complemented by observation of nanoscale carbonitride precipitation via transmission electron microscopy, scanning transmission electron microscopy, and high-energy synchrotron small-angle x-ray scattering. Through a combination of characterization techniques, this study presents a deeper understanding of nano- and microstructural changes occurring in a microalloyed steel during an induction hardening process. More... »

PAGES

1293-1300

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-019-03903-9

DOI

http://dx.doi.org/10.1007/s11665-019-03903-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112086501


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Colorado School of Mines, 1500 Illinois Street, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Whitley", 
        "givenName": "B. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Colorado School of Mines, 1500 Illinois Street, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Speer", 
        "givenName": "J. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Colorado School of Mines, 1500 Illinois Street, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cryderman", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Colorado School of Mines, 1500 Illinois Street, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klemm-Toole", 
        "givenName": "J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2013.11.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011023447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02665002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016799462", 
          "https://doi.org/10.1007/bf02665002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02665002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016799462", 
          "https://doi.org/10.1007/bf02665002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2355/isijinternational.35.1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021879695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2004.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024231235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2355/isijinternational.51.1852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024270550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889809002222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027986825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1005-0302(12)60172-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035510154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/174328408x322222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043292062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045047884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045047884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(02)00411-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046818717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x1511006x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049926988", 
          "https://doi.org/10.1134/s0031918x1511006x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.06.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051651391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889812004037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052757772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02647491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053117263", 
          "https://doi.org/10.1007/bf02647491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02647491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053117263", 
          "https://doi.org/10.1007/bf02647491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1037.2012.00348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071327755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.426-432.1517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072115043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.500-501.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072121131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/jinstmet1952.43.11_1068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084962350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s160057671800643x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104349267"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "An AISI 1045 steel modified with vanadium (V) and niobium (Nb) was studied to evaluate microstructural conditioning prior to and throughout a rapid heat treat process. In order to accomplish this, both computational and physical simulation techniques have been employed with the goal of assessing the microstructural evolution in a medium-carbon bar steel during the rapid austenitization and quenching procedures involved in an induction hardening process. The appropriate thermal profiles for induction hardening were obtained through finite element modeling using Flux 2D software. Physical simulations of the induction hardening process were carried out using a Gleeble\u00ae 3500. Analysis of prior austenite grain size is complemented by observation of nanoscale carbonitride precipitation via transmission electron microscopy, scanning transmission electron microscopy, and high-energy synchrotron small-angle x-ray scattering. Through a combination of characterization techniques, this study presents a deeper understanding of nano- and microstructural changes occurring in a microalloyed steel during an induction hardening process.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11665-019-03903-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Understanding Microstructural Evolution During Rapid Heat Treatment of Microalloyed Steels Through Computational Modeling, Advanced Physical Simulation, and Multiscale Characterization Techniques", 
    "pagination": "1293-1300", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "184b21175108fe5cbb23990a0b49128a13a4a8d3bfbf01ba7cf444bbbf167480"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-019-03903-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112086501"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-019-03903-9", 
      "https://app.dimensions.ai/details/publication/pub.1112086501"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72856_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11665-019-03903-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-019-03903-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-019-03903-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-019-03903-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-019-03903-9'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-019-03903-9 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N44972e87030c40bcab60f10ec48bcb7f
4 schema:citation sg:pub.10.1007/bf02647491
5 sg:pub.10.1007/bf02665002
6 sg:pub.10.1134/s0031918x1511006x
7 https://doi.org/10.1016/j.actamat.2004.04.027
8 https://doi.org/10.1016/j.actamat.2005.03.036
9 https://doi.org/10.1016/j.actamat.2015.06.057
10 https://doi.org/10.1016/j.scriptamat.2013.11.026
11 https://doi.org/10.1016/s0921-5093(02)00411-2
12 https://doi.org/10.1016/s1005-0302(12)60172-8
13 https://doi.org/10.1107/s0021889809002222
14 https://doi.org/10.1107/s0021889812004037
15 https://doi.org/10.1107/s160057671800643x
16 https://doi.org/10.1179/174328408x322222
17 https://doi.org/10.2320/jinstmet1952.43.11_1068
18 https://doi.org/10.2355/isijinternational.35.1196
19 https://doi.org/10.2355/isijinternational.51.1852
20 https://doi.org/10.3724/sp.j.1037.2012.00348
21 https://doi.org/10.4028/www.scientific.net/msf.426-432.1517
22 https://doi.org/10.4028/www.scientific.net/msf.500-501.75
23 schema:datePublished 2019-03
24 schema:datePublishedReg 2019-03-01
25 schema:description An AISI 1045 steel modified with vanadium (V) and niobium (Nb) was studied to evaluate microstructural conditioning prior to and throughout a rapid heat treat process. In order to accomplish this, both computational and physical simulation techniques have been employed with the goal of assessing the microstructural evolution in a medium-carbon bar steel during the rapid austenitization and quenching procedures involved in an induction hardening process. The appropriate thermal profiles for induction hardening were obtained through finite element modeling using Flux 2D software. Physical simulations of the induction hardening process were carried out using a Gleeble® 3500. Analysis of prior austenite grain size is complemented by observation of nanoscale carbonitride precipitation via transmission electron microscopy, scanning transmission electron microscopy, and high-energy synchrotron small-angle x-ray scattering. Through a combination of characterization techniques, this study presents a deeper understanding of nano- and microstructural changes occurring in a microalloyed steel during an induction hardening process.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N14d6cfbbdf0f4e06a845d9f594dd4186
30 Nd5d6fa3007a54aa5804b5553438c6564
31 sg:journal.1042007
32 schema:name Understanding Microstructural Evolution During Rapid Heat Treatment of Microalloyed Steels Through Computational Modeling, Advanced Physical Simulation, and Multiscale Characterization Techniques
33 schema:pagination 1293-1300
34 schema:productId N2119639bc7354ac7b6c43b34c64bb39d
35 N74d1b412c54d462fb6eb66a175d6fbb3
36 Nf660e9576a894d0ab5a7bf51101f2ccd
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112086501
38 https://doi.org/10.1007/s11665-019-03903-9
39 schema:sdDatePublished 2019-04-11T12:53
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Ne63c0b2346f24b39b9c5477048481127
42 schema:url https://link.springer.com/10.1007%2Fs11665-019-03903-9
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N14d6cfbbdf0f4e06a845d9f594dd4186 schema:issueNumber 3
47 rdf:type schema:PublicationIssue
48 N168b205ae0a44fbeae39c66b2b2cc028 rdf:first N3c4cc232bacb4999beb1558d442f5302
49 rdf:rest Neba42d89c7f84e0d80a9cdf4c99849ec
50 N2119639bc7354ac7b6c43b34c64bb39d schema:name readcube_id
51 schema:value 184b21175108fe5cbb23990a0b49128a13a4a8d3bfbf01ba7cf444bbbf167480
52 rdf:type schema:PropertyValue
53 N3c4cc232bacb4999beb1558d442f5302 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
54 schema:familyName Cryderman
55 schema:givenName R.
56 rdf:type schema:Person
57 N44972e87030c40bcab60f10ec48bcb7f rdf:first N4b56c8b28b594abe940f2efd79008194
58 rdf:rest Nc1b5515cbf634384bae7cb2a8a62a731
59 N47c92a96423442faaf891db384481b57 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
60 schema:familyName Speer
61 schema:givenName J. G.
62 rdf:type schema:Person
63 N4b56c8b28b594abe940f2efd79008194 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
64 schema:familyName Whitley
65 schema:givenName B. M.
66 rdf:type schema:Person
67 N74d1b412c54d462fb6eb66a175d6fbb3 schema:name dimensions_id
68 schema:value pub.1112086501
69 rdf:type schema:PropertyValue
70 Nc1b5515cbf634384bae7cb2a8a62a731 rdf:first N47c92a96423442faaf891db384481b57
71 rdf:rest N168b205ae0a44fbeae39c66b2b2cc028
72 Nd5d6fa3007a54aa5804b5553438c6564 schema:volumeNumber 28
73 rdf:type schema:PublicationVolume
74 Ne63c0b2346f24b39b9c5477048481127 schema:name Springer Nature - SN SciGraph project
75 rdf:type schema:Organization
76 Neba42d89c7f84e0d80a9cdf4c99849ec rdf:first Nf7040747de4141629974a71b5da4cfbe
77 rdf:rest rdf:nil
78 Nf660e9576a894d0ab5a7bf51101f2ccd schema:name doi
79 schema:value 10.1007/s11665-019-03903-9
80 rdf:type schema:PropertyValue
81 Nf7040747de4141629974a71b5da4cfbe schema:affiliation https://www.grid.ac/institutes/grid.254549.b
82 schema:familyName Klemm-Toole
83 schema:givenName J.
84 rdf:type schema:Person
85 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
86 schema:name Physical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
89 schema:name Other Physical Sciences
90 rdf:type schema:DefinedTerm
91 sg:journal.1042007 schema:issn 1059-9495
92 1544-1024
93 schema:name Journal of Materials Engineering and Performance
94 rdf:type schema:Periodical
95 sg:pub.10.1007/bf02647491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053117263
96 https://doi.org/10.1007/bf02647491
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf02665002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016799462
99 https://doi.org/10.1007/bf02665002
100 rdf:type schema:CreativeWork
101 sg:pub.10.1134/s0031918x1511006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049926988
102 https://doi.org/10.1134/s0031918x1511006x
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.actamat.2004.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024231235
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.actamat.2005.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045047884
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.actamat.2015.06.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051651391
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.scriptamat.2013.11.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011023447
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s0921-5093(02)00411-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046818717
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s1005-0302(12)60172-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035510154
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1107/s0021889809002222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027986825
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1107/s0021889812004037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052757772
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1107/s160057671800643x schema:sameAs https://app.dimensions.ai/details/publication/pub.1104349267
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1179/174328408x322222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043292062
123 rdf:type schema:CreativeWork
124 https://doi.org/10.2320/jinstmet1952.43.11_1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084962350
125 rdf:type schema:CreativeWork
126 https://doi.org/10.2355/isijinternational.35.1196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021879695
127 rdf:type schema:CreativeWork
128 https://doi.org/10.2355/isijinternational.51.1852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024270550
129 rdf:type schema:CreativeWork
130 https://doi.org/10.3724/sp.j.1037.2012.00348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071327755
131 rdf:type schema:CreativeWork
132 https://doi.org/10.4028/www.scientific.net/msf.426-432.1517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072115043
133 rdf:type schema:CreativeWork
134 https://doi.org/10.4028/www.scientific.net/msf.500-501.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072121131
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
137 schema:name Colorado School of Mines, 1500 Illinois Street, 80401, Golden, CO, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...