Understanding Microstructural Evolution During Rapid Heat Treatment of Microalloyed Steels Through Computational Modeling, Advanced Physical Simulation, and Multiscale Characterization Techniques View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-03

AUTHORS

B. M. Whitley, J. G. Speer, R. Cryderman, J. Klemm-Toole

ABSTRACT

An AISI 1045 steel modified with vanadium (V) and niobium (Nb) was studied to evaluate microstructural conditioning prior to and throughout a rapid heat treat process. In order to accomplish this, both computational and physical simulation techniques have been employed with the goal of assessing the microstructural evolution in a medium-carbon bar steel during the rapid austenitization and quenching procedures involved in an induction hardening process. The appropriate thermal profiles for induction hardening were obtained through finite element modeling using Flux 2D software. Physical simulations of the induction hardening process were carried out using a Gleeble® 3500. Analysis of prior austenite grain size is complemented by observation of nanoscale carbonitride precipitation via transmission electron microscopy, scanning transmission electron microscopy, and high-energy synchrotron small-angle x-ray scattering. Through a combination of characterization techniques, this study presents a deeper understanding of nano- and microstructural changes occurring in a microalloyed steel during an induction hardening process. More... »

PAGES

1293-1300

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-019-03903-9

DOI

http://dx.doi.org/10.1007/s11665-019-03903-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112086501


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Colorado School of Mines, 1500 Illinois Street, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Whitley", 
        "givenName": "B. M.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Colorado School of Mines, 1500 Illinois Street, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Speer", 
        "givenName": "J. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Colorado School of Mines, 1500 Illinois Street, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cryderman", 
        "givenName": "R.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Colorado School of Mines, 1500 Illinois Street, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klemm-Toole", 
        "givenName": "J.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2013.11.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011023447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02665002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016799462", 
          "https://doi.org/10.1007/bf02665002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02665002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016799462", 
          "https://doi.org/10.1007/bf02665002"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2355/isijinternational.35.1196", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021879695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2004.04.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024231235"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2355/isijinternational.51.1852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024270550"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889809002222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027986825"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1005-0302(12)60172-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035510154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/174328408x322222", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043292062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045047884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2005.03.036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045047884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(02)00411-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046818717"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0031918x1511006x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049926988", 
          "https://doi.org/10.1134/s0031918x1511006x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.06.057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051651391"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889812004037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052757772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02647491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053117263", 
          "https://doi.org/10.1007/bf02647491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02647491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053117263", 
          "https://doi.org/10.1007/bf02647491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3724/sp.j.1037.2012.00348", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071327755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.426-432.1517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072115043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.500-501.75", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072121131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/jinstmet1952.43.11_1068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084962350"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s160057671800643x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104349267"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-03", 
    "datePublishedReg": "2019-03-01", 
    "description": "An AISI 1045 steel modified with vanadium (V) and niobium (Nb) was studied to evaluate microstructural conditioning prior to and throughout a rapid heat treat process. In order to accomplish this, both computational and physical simulation techniques have been employed with the goal of assessing the microstructural evolution in a medium-carbon bar steel during the rapid austenitization and quenching procedures involved in an induction hardening process. The appropriate thermal profiles for induction hardening were obtained through finite element modeling using Flux 2D software. Physical simulations of the induction hardening process were carried out using a Gleeble\u00ae 3500. Analysis of prior austenite grain size is complemented by observation of nanoscale carbonitride precipitation via transmission electron microscopy, scanning transmission electron microscopy, and high-energy synchrotron small-angle x-ray scattering. Through a combination of characterization techniques, this study presents a deeper understanding of nano- and microstructural changes occurring in a microalloyed steel during an induction hardening process.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11665-019-03903-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Understanding Microstructural Evolution During Rapid Heat Treatment of Microalloyed Steels Through Computational Modeling, Advanced Physical Simulation, and Multiscale Characterization Techniques", 
    "pagination": "1293-1300", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "184b21175108fe5cbb23990a0b49128a13a4a8d3bfbf01ba7cf444bbbf167480"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-019-03903-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112086501"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-019-03903-9", 
      "https://app.dimensions.ai/details/publication/pub.1112086501"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72856_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11665-019-03903-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-019-03903-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-019-03903-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-019-03903-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-019-03903-9'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      46 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-019-03903-9 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N88aa639b907e4e27a773545019c0b931
4 schema:citation sg:pub.10.1007/bf02647491
5 sg:pub.10.1007/bf02665002
6 sg:pub.10.1134/s0031918x1511006x
7 https://doi.org/10.1016/j.actamat.2004.04.027
8 https://doi.org/10.1016/j.actamat.2005.03.036
9 https://doi.org/10.1016/j.actamat.2015.06.057
10 https://doi.org/10.1016/j.scriptamat.2013.11.026
11 https://doi.org/10.1016/s0921-5093(02)00411-2
12 https://doi.org/10.1016/s1005-0302(12)60172-8
13 https://doi.org/10.1107/s0021889809002222
14 https://doi.org/10.1107/s0021889812004037
15 https://doi.org/10.1107/s160057671800643x
16 https://doi.org/10.1179/174328408x322222
17 https://doi.org/10.2320/jinstmet1952.43.11_1068
18 https://doi.org/10.2355/isijinternational.35.1196
19 https://doi.org/10.2355/isijinternational.51.1852
20 https://doi.org/10.3724/sp.j.1037.2012.00348
21 https://doi.org/10.4028/www.scientific.net/msf.426-432.1517
22 https://doi.org/10.4028/www.scientific.net/msf.500-501.75
23 schema:datePublished 2019-03
24 schema:datePublishedReg 2019-03-01
25 schema:description An AISI 1045 steel modified with vanadium (V) and niobium (Nb) was studied to evaluate microstructural conditioning prior to and throughout a rapid heat treat process. In order to accomplish this, both computational and physical simulation techniques have been employed with the goal of assessing the microstructural evolution in a medium-carbon bar steel during the rapid austenitization and quenching procedures involved in an induction hardening process. The appropriate thermal profiles for induction hardening were obtained through finite element modeling using Flux 2D software. Physical simulations of the induction hardening process were carried out using a Gleeble® 3500. Analysis of prior austenite grain size is complemented by observation of nanoscale carbonitride precipitation via transmission electron microscopy, scanning transmission electron microscopy, and high-energy synchrotron small-angle x-ray scattering. Through a combination of characterization techniques, this study presents a deeper understanding of nano- and microstructural changes occurring in a microalloyed steel during an induction hardening process.
26 schema:genre research_article
27 schema:inLanguage en
28 schema:isAccessibleForFree false
29 schema:isPartOf N9f0240bb824a4242938a57528431b375
30 Nf47719e6484242a9b20860b3cd9da8f8
31 sg:journal.1042007
32 schema:name Understanding Microstructural Evolution During Rapid Heat Treatment of Microalloyed Steels Through Computational Modeling, Advanced Physical Simulation, and Multiscale Characterization Techniques
33 schema:pagination 1293-1300
34 schema:productId N53b747aa40fb4793b5088264ebae6155
35 N8ef4f6b8ace6429ea32426fa0a7a7ffc
36 Nfb2ad6e2890d4aaf8f73b8b7945a39b7
37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112086501
38 https://doi.org/10.1007/s11665-019-03903-9
39 schema:sdDatePublished 2019-04-11T12:53
40 schema:sdLicense https://scigraph.springernature.com/explorer/license/
41 schema:sdPublisher Nd670a2920a044740a3faf2efa9c51eb7
42 schema:url https://link.springer.com/10.1007%2Fs11665-019-03903-9
43 sgo:license sg:explorer/license/
44 sgo:sdDataset articles
45 rdf:type schema:ScholarlyArticle
46 N25837399cb8d445dbca53b611a7a173b schema:affiliation https://www.grid.ac/institutes/grid.254549.b
47 schema:familyName Klemm-Toole
48 schema:givenName J.
49 rdf:type schema:Person
50 N42e5a6a0db774c148b9a25b625481cd7 rdf:first Ne56d84932dc1465d91d52567aaaec33a
51 rdf:rest Nc7df4feb0d41423ba96917de27b8f21f
52 N53b747aa40fb4793b5088264ebae6155 schema:name dimensions_id
53 schema:value pub.1112086501
54 rdf:type schema:PropertyValue
55 N6d73ac387e9f4dfbb723b41a4ffa53ff schema:affiliation https://www.grid.ac/institutes/grid.254549.b
56 schema:familyName Whitley
57 schema:givenName B. M.
58 rdf:type schema:Person
59 N88aa639b907e4e27a773545019c0b931 rdf:first N6d73ac387e9f4dfbb723b41a4ffa53ff
60 rdf:rest N8d999fd857404b0595e9251c04bd362e
61 N8d999fd857404b0595e9251c04bd362e rdf:first Ndaa18b2d70d8498f8f197390357bded0
62 rdf:rest N42e5a6a0db774c148b9a25b625481cd7
63 N8ef4f6b8ace6429ea32426fa0a7a7ffc schema:name doi
64 schema:value 10.1007/s11665-019-03903-9
65 rdf:type schema:PropertyValue
66 N9f0240bb824a4242938a57528431b375 schema:issueNumber 3
67 rdf:type schema:PublicationIssue
68 Nc7df4feb0d41423ba96917de27b8f21f rdf:first N25837399cb8d445dbca53b611a7a173b
69 rdf:rest rdf:nil
70 Nd670a2920a044740a3faf2efa9c51eb7 schema:name Springer Nature - SN SciGraph project
71 rdf:type schema:Organization
72 Ndaa18b2d70d8498f8f197390357bded0 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
73 schema:familyName Speer
74 schema:givenName J. G.
75 rdf:type schema:Person
76 Ne56d84932dc1465d91d52567aaaec33a schema:affiliation https://www.grid.ac/institutes/grid.254549.b
77 schema:familyName Cryderman
78 schema:givenName R.
79 rdf:type schema:Person
80 Nf47719e6484242a9b20860b3cd9da8f8 schema:volumeNumber 28
81 rdf:type schema:PublicationVolume
82 Nfb2ad6e2890d4aaf8f73b8b7945a39b7 schema:name readcube_id
83 schema:value 184b21175108fe5cbb23990a0b49128a13a4a8d3bfbf01ba7cf444bbbf167480
84 rdf:type schema:PropertyValue
85 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
86 schema:name Physical Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
89 schema:name Other Physical Sciences
90 rdf:type schema:DefinedTerm
91 sg:journal.1042007 schema:issn 1059-9495
92 1544-1024
93 schema:name Journal of Materials Engineering and Performance
94 rdf:type schema:Periodical
95 sg:pub.10.1007/bf02647491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053117263
96 https://doi.org/10.1007/bf02647491
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf02665002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016799462
99 https://doi.org/10.1007/bf02665002
100 rdf:type schema:CreativeWork
101 sg:pub.10.1134/s0031918x1511006x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049926988
102 https://doi.org/10.1134/s0031918x1511006x
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.actamat.2004.04.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024231235
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.actamat.2005.03.036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045047884
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.actamat.2015.06.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051651391
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.scriptamat.2013.11.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011023447
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s0921-5093(02)00411-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046818717
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s1005-0302(12)60172-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035510154
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1107/s0021889809002222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027986825
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1107/s0021889812004037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052757772
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1107/s160057671800643x schema:sameAs https://app.dimensions.ai/details/publication/pub.1104349267
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1179/174328408x322222 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043292062
123 rdf:type schema:CreativeWork
124 https://doi.org/10.2320/jinstmet1952.43.11_1068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084962350
125 rdf:type schema:CreativeWork
126 https://doi.org/10.2355/isijinternational.35.1196 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021879695
127 rdf:type schema:CreativeWork
128 https://doi.org/10.2355/isijinternational.51.1852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024270550
129 rdf:type schema:CreativeWork
130 https://doi.org/10.3724/sp.j.1037.2012.00348 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071327755
131 rdf:type schema:CreativeWork
132 https://doi.org/10.4028/www.scientific.net/msf.426-432.1517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072115043
133 rdf:type schema:CreativeWork
134 https://doi.org/10.4028/www.scientific.net/msf.500-501.75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072121131
135 rdf:type schema:CreativeWork
136 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
137 schema:name Colorado School of Mines, 1500 Illinois Street, 80401, Golden, CO, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...