Influence of Dynamic Three Point Bending on the Work Hardening Capacity of T105Mn120 Manganese Steel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-09-27

AUTHORS

V. Bulbuc, B. Pricop, F. Maxim, M. Popa, N. Cimpoeşu, L. G. Bujoreanu

ABSTRACT

The paper analyzes work hardening behavior of T105Mn120 Hadfield steel under dynamic conditions. The specimens were investigated under two states: (a) untreated (as cast) and (b) solution treated to 1100 °C. Dynamic flexural behavior was examined by means of three-point-bending tests performed with a dynamic mechanical analyser (DMA), and structural analysis was done by x-ray diffraction, optical and scanning electron microscopy; DMA tests were performed under two variants: (a) temperature scans, between − 150 and 400 °C and (b) isothermal strain sweeps, up to 0.15% strain amplitudes. The former emphasized the critical temperatures of thermally induced reversible martensitic transformation and antiferromagnetic–paramagnetic phase transition, while the latter enabled to monitor the storage modulus increase due to the work hardening caused by dynamic bending. Strain sweeps tests revealed the effects of both dynamic bending frequency and number of cycles. The largest work hardening effect, obtained after five strain sweep cycles applied at the frequency of 5 Hz, was associated with the finest distribution of precipitated carbides, observed by differential scanning calorimetry and the formation of slip micro-bands, illustrated on OM micrographs and SEM energy dispersion spectroscopy maps. More... »

PAGES

6127-6134

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-018-3658-2

DOI

http://dx.doi.org/10.1007/s11665-018-3658-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107273421


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The National Railway Company \u201cCFR\u201d SA, Regional Branch of Passenger Rail Iasi, Str. Pia\u0163a G\u0103rii 1, 700090, Iasi, Romania", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "The National Railway Company \u201cCFR\u201d SA, Regional Branch of Passenger Rail Iasi, Str. Pia\u0163a G\u0103rii 1, 700090, Iasi, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bulbuc", 
        "givenName": "V.", 
        "id": "sg:person.011562001534.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011562001534.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Ia\u015fi, Blvd Dimitrie Mangeron 41, 700050, Iasi, Romania", 
          "id": "http://www.grid.ac/institutes/grid.6899.e", 
          "name": [
            "Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Ia\u015fi, Blvd Dimitrie Mangeron 41, 700050, Iasi, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pricop", 
        "givenName": "B.", 
        "id": "sg:person.011667755007.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667755007.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ASAM S.A., Str. Aurel Vlaicu 77, 700381, Iasi, Romania", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "ASAM S.A., Str. Aurel Vlaicu 77, 700381, Iasi, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maxim", 
        "givenName": "F.", 
        "id": "sg:person.013154742534.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013154742534.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Ia\u015fi, Blvd Dimitrie Mangeron 41, 700050, Iasi, Romania", 
          "id": "http://www.grid.ac/institutes/grid.6899.e", 
          "name": [
            "Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Ia\u015fi, Blvd Dimitrie Mangeron 41, 700050, Iasi, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popa", 
        "givenName": "M.", 
        "id": "sg:person.011652361111.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011652361111.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Ia\u015fi, Blvd Dimitrie Mangeron 41, 700050, Iasi, Romania", 
          "id": "http://www.grid.ac/institutes/grid.6899.e", 
          "name": [
            "Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Ia\u015fi, Blvd Dimitrie Mangeron 41, 700050, Iasi, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cimpoe\u015fu", 
        "givenName": "N.", 
        "id": "sg:person.015747511146.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015747511146.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Ia\u015fi, Blvd Dimitrie Mangeron 41, 700050, Iasi, Romania", 
          "id": "http://www.grid.ac/institutes/grid.6899.e", 
          "name": [
            "Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Ia\u015fi, Blvd Dimitrie Mangeron 41, 700050, Iasi, Romania"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bujoreanu", 
        "givenName": "L. G.", 
        "id": "sg:person.010371604137.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010371604137.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s10853-010-4369-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034487568", 
          "https://doi.org/10.1007/s10853-010-4369-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-010-9702-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004693697", 
          "https://doi.org/10.1007/s11665-010-9702-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-010-4549-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003582926", 
          "https://doi.org/10.1007/s10853-010-4549-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-012-6604-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007014116", 
          "https://doi.org/10.1007/s10853-012-6604-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-011-5752-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006941182", 
          "https://doi.org/10.1007/s10853-011-5752-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-09-27", 
    "datePublishedReg": "2018-09-27", 
    "description": "The paper analyzes work hardening behavior of T105Mn120 Hadfield steel under dynamic conditions. The specimens were investigated under two states: (a) untreated (as cast) and (b) solution treated to 1100\u00a0\u00b0C. Dynamic flexural behavior was examined by means of three-point-bending tests performed with a dynamic mechanical analyser (DMA), and structural analysis was done by x-ray diffraction, optical and scanning electron microscopy; DMA tests were performed under two variants: (a) temperature scans, between \u2212\u2009150 and 400\u00a0\u00b0C and (b) isothermal strain sweeps, up to 0.15% strain amplitudes. The former emphasized the critical temperatures of thermally induced reversible martensitic transformation and antiferromagnetic\u2013paramagnetic phase transition, while the latter enabled to monitor the storage modulus increase due to the work hardening caused by dynamic bending. Strain sweeps tests revealed the effects of both dynamic bending frequency and number of cycles. The largest work hardening effect, obtained after five strain sweep cycles applied at the frequency of 5\u00a0Hz, was associated with the finest distribution of precipitated carbides, observed by differential scanning calorimetry and the formation of slip micro-bands, illustrated on OM micrographs and SEM energy dispersion spectroscopy maps.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11665-018-3658-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "dynamic mechanical analyzer", 
      "three-point-bending test", 
      "work hardening effect", 
      "work hardening capacity", 
      "dynamic flexural behavior", 
      "formation of slip", 
      "storage modulus increases", 
      "reversible martensitic transformation", 
      "Hadfield steel", 
      "flexural behavior", 
      "manganese steel", 
      "hardening behavior", 
      "mechanical analyzer", 
      "number of cycles", 
      "OM micrographs", 
      "work hardening", 
      "hardening effect", 
      "hardening capacity", 
      "isothermal strain", 
      "DMA tests", 
      "strain amplitude", 
      "dynamic bending", 
      "fine distribution", 
      "modulus increases", 
      "sweep tests", 
      "martensitic transformation", 
      "dynamic conditions", 
      "steel", 
      "differential scanning calorimetry", 
      "ray diffraction", 
      "electron microscopy", 
      "sweep cycles", 
      "antiferromagnetic-paramagnetic phase transition", 
      "spectroscopy maps", 
      "critical temperature", 
      "scanning calorimetry", 
      "temperature scans", 
      "carbide", 
      "hardening", 
      "bending", 
      "slip", 
      "structural analysis", 
      "phase transition", 
      "behavior", 
      "test", 
      "temperature", 
      "micrographs", 
      "diffraction", 
      "cycle", 
      "microscopy", 
      "Hz", 
      "analyzer", 
      "calorimetry", 
      "frequency", 
      "solution", 
      "specimens", 
      "influence", 
      "amplitude", 
      "conditions", 
      "effect", 
      "capacity", 
      "distribution", 
      "formation", 
      "strains", 
      "transition", 
      "means", 
      "increase", 
      "point", 
      "transformation", 
      "maps", 
      "state", 
      "analysis", 
      "number", 
      "scans", 
      "paper", 
      "variants", 
      "T105Mn120 Hadfield steel", 
      "largest work hardening effect", 
      "strain sweep cycles", 
      "SEM energy dispersion spectroscopy maps", 
      "energy dispersion spectroscopy maps", 
      "dispersion spectroscopy maps", 
      "Dynamic Three Point", 
      "Three Point", 
      "T105Mn120 Manganese Steel"
    ], 
    "name": "Influence of Dynamic Three Point Bending on the Work Hardening Capacity of T105Mn120 Manganese Steel", 
    "pagination": "6127-6134", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107273421"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-018-3658-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-018-3658-2", 
      "https://app.dimensions.ai/details/publication/pub.1107273421"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_762.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11665-018-3658-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-018-3658-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-018-3658-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-018-3658-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-018-3658-2'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      22 PREDICATES      115 URIs      102 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-018-3658-2 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N1e1976aab4df453e87a5500945dd55d5
4 schema:citation sg:pub.10.1007/s10853-010-4369-8
5 sg:pub.10.1007/s10853-010-4549-6
6 sg:pub.10.1007/s10853-011-5752-9
7 sg:pub.10.1007/s10853-012-6604-y
8 sg:pub.10.1007/s11665-010-9702-5
9 schema:datePublished 2018-09-27
10 schema:datePublishedReg 2018-09-27
11 schema:description The paper analyzes work hardening behavior of T105Mn120 Hadfield steel under dynamic conditions. The specimens were investigated under two states: (a) untreated (as cast) and (b) solution treated to 1100 °C. Dynamic flexural behavior was examined by means of three-point-bending tests performed with a dynamic mechanical analyser (DMA), and structural analysis was done by x-ray diffraction, optical and scanning electron microscopy; DMA tests were performed under two variants: (a) temperature scans, between − 150 and 400 °C and (b) isothermal strain sweeps, up to 0.15% strain amplitudes. The former emphasized the critical temperatures of thermally induced reversible martensitic transformation and antiferromagnetic–paramagnetic phase transition, while the latter enabled to monitor the storage modulus increase due to the work hardening caused by dynamic bending. Strain sweeps tests revealed the effects of both dynamic bending frequency and number of cycles. The largest work hardening effect, obtained after five strain sweep cycles applied at the frequency of 5 Hz, was associated with the finest distribution of precipitated carbides, observed by differential scanning calorimetry and the formation of slip micro-bands, illustrated on OM micrographs and SEM energy dispersion spectroscopy maps.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N81ce5481bb2442988df8fc6ceefab22b
16 Na7491ae748574ee6919ee3b8bf10a894
17 sg:journal.1042007
18 schema:keywords DMA tests
19 Dynamic Three Point
20 Hadfield steel
21 Hz
22 OM micrographs
23 SEM energy dispersion spectroscopy maps
24 T105Mn120 Hadfield steel
25 T105Mn120 Manganese Steel
26 Three Point
27 amplitude
28 analysis
29 analyzer
30 antiferromagnetic-paramagnetic phase transition
31 behavior
32 bending
33 calorimetry
34 capacity
35 carbide
36 conditions
37 critical temperature
38 cycle
39 differential scanning calorimetry
40 diffraction
41 dispersion spectroscopy maps
42 distribution
43 dynamic bending
44 dynamic conditions
45 dynamic flexural behavior
46 dynamic mechanical analyzer
47 effect
48 electron microscopy
49 energy dispersion spectroscopy maps
50 fine distribution
51 flexural behavior
52 formation
53 formation of slip
54 frequency
55 hardening
56 hardening behavior
57 hardening capacity
58 hardening effect
59 increase
60 influence
61 isothermal strain
62 largest work hardening effect
63 manganese steel
64 maps
65 martensitic transformation
66 means
67 mechanical analyzer
68 micrographs
69 microscopy
70 modulus increases
71 number
72 number of cycles
73 paper
74 phase transition
75 point
76 ray diffraction
77 reversible martensitic transformation
78 scanning calorimetry
79 scans
80 slip
81 solution
82 specimens
83 spectroscopy maps
84 state
85 steel
86 storage modulus increases
87 strain amplitude
88 strain sweep cycles
89 strains
90 structural analysis
91 sweep cycles
92 sweep tests
93 temperature
94 temperature scans
95 test
96 three-point-bending test
97 transformation
98 transition
99 variants
100 work hardening
101 work hardening capacity
102 work hardening effect
103 schema:name Influence of Dynamic Three Point Bending on the Work Hardening Capacity of T105Mn120 Manganese Steel
104 schema:pagination 6127-6134
105 schema:productId N20c25afc2f0c439d851dea6ce266a3b3
106 Nce4b40d8075b48b79fe89f2e88469aed
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107273421
108 https://doi.org/10.1007/s11665-018-3658-2
109 schema:sdDatePublished 2021-12-01T19:42
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N15030649ef024092ab99b200befef62a
112 schema:url https://doi.org/10.1007/s11665-018-3658-2
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N15030649ef024092ab99b200befef62a schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 N1e1976aab4df453e87a5500945dd55d5 rdf:first sg:person.011562001534.18
119 rdf:rest Ne5ef3e0c41184a3b9af8a8e8b907c864
120 N20c25afc2f0c439d851dea6ce266a3b3 schema:name dimensions_id
121 schema:value pub.1107273421
122 rdf:type schema:PropertyValue
123 N29859834456d4fe9accb62f11fe70ded rdf:first sg:person.011652361111.45
124 rdf:rest N7ffedd8bdc9048119cf6908a38db670a
125 N35c24d4c70814764af6ff74d57e7efeb rdf:first sg:person.010371604137.48
126 rdf:rest rdf:nil
127 N59380fc605d540d1b3c53fb1c25884c3 rdf:first sg:person.013154742534.90
128 rdf:rest N29859834456d4fe9accb62f11fe70ded
129 N7ffedd8bdc9048119cf6908a38db670a rdf:first sg:person.015747511146.91
130 rdf:rest N35c24d4c70814764af6ff74d57e7efeb
131 N81ce5481bb2442988df8fc6ceefab22b schema:volumeNumber 27
132 rdf:type schema:PublicationVolume
133 Na7491ae748574ee6919ee3b8bf10a894 schema:issueNumber 11
134 rdf:type schema:PublicationIssue
135 Nce4b40d8075b48b79fe89f2e88469aed schema:name doi
136 schema:value 10.1007/s11665-018-3658-2
137 rdf:type schema:PropertyValue
138 Ne5ef3e0c41184a3b9af8a8e8b907c864 rdf:first sg:person.011667755007.64
139 rdf:rest N59380fc605d540d1b3c53fb1c25884c3
140 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
141 schema:name Engineering
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
144 schema:name Materials Engineering
145 rdf:type schema:DefinedTerm
146 sg:journal.1042007 schema:issn 1059-9495
147 1544-1024
148 schema:name Journal of Materials Engineering and Performance
149 schema:publisher Springer Nature
150 rdf:type schema:Periodical
151 sg:person.010371604137.48 schema:affiliation grid-institutes:grid.6899.e
152 schema:familyName Bujoreanu
153 schema:givenName L. G.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010371604137.48
155 rdf:type schema:Person
156 sg:person.011562001534.18 schema:affiliation grid-institutes:None
157 schema:familyName Bulbuc
158 schema:givenName V.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011562001534.18
160 rdf:type schema:Person
161 sg:person.011652361111.45 schema:affiliation grid-institutes:grid.6899.e
162 schema:familyName Popa
163 schema:givenName M.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011652361111.45
165 rdf:type schema:Person
166 sg:person.011667755007.64 schema:affiliation grid-institutes:grid.6899.e
167 schema:familyName Pricop
168 schema:givenName B.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011667755007.64
170 rdf:type schema:Person
171 sg:person.013154742534.90 schema:affiliation grid-institutes:None
172 schema:familyName Maxim
173 schema:givenName F.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013154742534.90
175 rdf:type schema:Person
176 sg:person.015747511146.91 schema:affiliation grid-institutes:grid.6899.e
177 schema:familyName Cimpoeşu
178 schema:givenName N.
179 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015747511146.91
180 rdf:type schema:Person
181 sg:pub.10.1007/s10853-010-4369-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034487568
182 https://doi.org/10.1007/s10853-010-4369-8
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s10853-010-4549-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003582926
185 https://doi.org/10.1007/s10853-010-4549-6
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s10853-011-5752-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006941182
188 https://doi.org/10.1007/s10853-011-5752-9
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s10853-012-6604-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1007014116
191 https://doi.org/10.1007/s10853-012-6604-y
192 rdf:type schema:CreativeWork
193 sg:pub.10.1007/s11665-010-9702-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004693697
194 https://doi.org/10.1007/s11665-010-9702-5
195 rdf:type schema:CreativeWork
196 grid-institutes:None schema:alternateName ASAM S.A., Str. Aurel Vlaicu 77, 700381, Iasi, Romania
197 The National Railway Company “CFR” SA, Regional Branch of Passenger Rail Iasi, Str. Piaţa Gării 1, 700090, Iasi, Romania
198 schema:name ASAM S.A., Str. Aurel Vlaicu 77, 700381, Iasi, Romania
199 The National Railway Company “CFR” SA, Regional Branch of Passenger Rail Iasi, Str. Piaţa Gării 1, 700090, Iasi, Romania
200 rdf:type schema:Organization
201 grid-institutes:grid.6899.e schema:alternateName Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd Dimitrie Mangeron 41, 700050, Iasi, Romania
202 schema:name Faculty of Materials Science and Engineering, Gheorghe Asachi Technical University of Iaşi, Blvd Dimitrie Mangeron 41, 700050, Iasi, Romania
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...