Phase-Field Modeling of Nugget Zone for a AZ31-Mg-Alloy Friction Stir Weld View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07-02

AUTHORS

C. G. Prosgolitis, S. G. Lambrakos, A. D. Zervaki

ABSTRACT

This work presents simulation of microstructure evolution in the nugget zone (NZ) of a AZ31-Mg-alloy friction stir weld. The process parameters (tool geometrical characteristics, rotational speed, travel speed, applied load) have been correlated with the resulting microstructural features in the NZ of the weld (grain size and population) with the aid of the MICRESS software, which provides the ability to simulate both nucleation and grain growth during dynamic recrystallization phenomena evolving in the NZ during the weld thermal cycle. The input parameters of the developed model include the tool geometry, the welding conditions as well as the recrystallization energy, the grain boundary mobility and specific material properties. NZ microstructure obtained by simulation shows good agreement with experimental measurements for both grain population and size. More... »

PAGES

5102-5113

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-018-3471-y

DOI

http://dx.doi.org/10.1007/s11665-018-3471-y

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1105270379


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece", 
          "id": "http://www.grid.ac/institutes/grid.410558.d", 
          "name": [
            "Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Prosgolitis", 
        "givenName": "C. G.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science and Technology Division, Naval Research Laboratory, Code 6390, 20375-5320, Washington, DC, USA", 
          "id": "http://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Materials Science and Technology Division, Naval Research Laboratory, Code 6390, 20375-5320, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lambrakos", 
        "givenName": "S. G.", 
        "id": "sg:person.01265271754.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265271754.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece", 
          "id": "http://www.grid.ac/institutes/grid.410558.d", 
          "name": [
            "Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zervaki", 
        "givenName": "A. D.", 
        "id": "sg:person.07420163560.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420163560.19"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11663-014-0089-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017054233", 
          "https://doi.org/10.1007/s11663-014-0089-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-016-1970-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006013261", 
          "https://doi.org/10.1007/s11665-016-1970-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00170-015-7595-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004674802", 
          "https://doi.org/10.1007/s00170-015-7595-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-002-0150-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009240989", 
          "https://doi.org/10.1007/s11661-002-0150-1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-07-02", 
    "datePublishedReg": "2018-07-02", 
    "description": "This work presents simulation of microstructure evolution in the nugget zone (NZ) of a AZ31-Mg-alloy friction stir weld. The process parameters (tool geometrical characteristics, rotational speed, travel speed, applied load) have been correlated with the resulting microstructural features in the NZ of the weld (grain size and population) with the aid of the MICRESS software, which provides the ability to simulate both nucleation and grain growth during dynamic recrystallization phenomena evolving in the NZ during the weld thermal cycle. The input parameters of the developed model include the tool geometry, the welding conditions as well as the recrystallization energy, the grain boundary mobility and specific material properties. NZ microstructure obtained by simulation shows good agreement with experimental measurements for both grain population and size.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11665-018-3471-y", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "10", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "keywords": [
      "friction stir welds", 
      "nugget zone", 
      "AZ31 Mg", 
      "weld thermal cycle", 
      "dynamic recrystallization phenomena", 
      "phase-field modeling", 
      "grain boundary mobility", 
      "specific material properties", 
      "recrystallization energy", 
      "welding conditions", 
      "thermal cycles", 
      "tool geometry", 
      "microstructure evolution", 
      "process parameters", 
      "microstructural features", 
      "grain growth", 
      "material properties", 
      "boundary mobility", 
      "recrystallization phenomena", 
      "welds", 
      "experimental measurements", 
      "input parameters", 
      "good agreement", 
      "simulations", 
      "microstructure", 
      "parameters", 
      "nucleation", 
      "zone", 
      "modeling", 
      "geometry", 
      "energy", 
      "properties", 
      "grain population", 
      "measurements", 
      "agreement", 
      "conditions", 
      "work", 
      "software", 
      "cycle", 
      "mobility", 
      "phenomenon", 
      "size", 
      "model", 
      "evolution", 
      "aid", 
      "features", 
      "growth", 
      "ability", 
      "population"
    ], 
    "name": "Phase-Field Modeling of Nugget Zone for a AZ31-Mg-Alloy Friction Stir Weld", 
    "pagination": "5102-5113", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1105270379"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-018-3471-y"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-018-3471-y", 
      "https://app.dimensions.ai/details/publication/pub.1105270379"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T21:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_777.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11665-018-3471-y"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-018-3471-y'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-018-3471-y'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-018-3471-y'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-018-3471-y'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      21 PREDICATES      77 URIs      65 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-018-3471-y schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N05dbbdfe58a64b2e8d77160681691c84
4 schema:citation sg:pub.10.1007/s00170-015-7595-z
5 sg:pub.10.1007/s11661-002-0150-1
6 sg:pub.10.1007/s11663-014-0089-9
7 sg:pub.10.1007/s11665-016-1970-2
8 schema:datePublished 2018-07-02
9 schema:datePublishedReg 2018-07-02
10 schema:description This work presents simulation of microstructure evolution in the nugget zone (NZ) of a AZ31-Mg-alloy friction stir weld. The process parameters (tool geometrical characteristics, rotational speed, travel speed, applied load) have been correlated with the resulting microstructural features in the NZ of the weld (grain size and population) with the aid of the MICRESS software, which provides the ability to simulate both nucleation and grain growth during dynamic recrystallization phenomena evolving in the NZ during the weld thermal cycle. The input parameters of the developed model include the tool geometry, the welding conditions as well as the recrystallization energy, the grain boundary mobility and specific material properties. NZ microstructure obtained by simulation shows good agreement with experimental measurements for both grain population and size.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N4b254b9ac59a42b5823845a5435c226c
14 Nb3189d7f707c46e3ab171a121409eecf
15 sg:journal.1042007
16 schema:keywords AZ31 Mg
17 ability
18 agreement
19 aid
20 boundary mobility
21 conditions
22 cycle
23 dynamic recrystallization phenomena
24 energy
25 evolution
26 experimental measurements
27 features
28 friction stir welds
29 geometry
30 good agreement
31 grain boundary mobility
32 grain growth
33 grain population
34 growth
35 input parameters
36 material properties
37 measurements
38 microstructural features
39 microstructure
40 microstructure evolution
41 mobility
42 model
43 modeling
44 nucleation
45 nugget zone
46 parameters
47 phase-field modeling
48 phenomenon
49 population
50 process parameters
51 properties
52 recrystallization energy
53 recrystallization phenomena
54 simulations
55 size
56 software
57 specific material properties
58 thermal cycles
59 tool geometry
60 weld thermal cycle
61 welding conditions
62 welds
63 work
64 zone
65 schema:name Phase-Field Modeling of Nugget Zone for a AZ31-Mg-Alloy Friction Stir Weld
66 schema:pagination 5102-5113
67 schema:productId N1a4a43c3f7454b2ab46e858d29e482bf
68 Nd1ec767550234bee9e419af86b147103
69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105270379
70 https://doi.org/10.1007/s11665-018-3471-y
71 schema:sdDatePublished 2022-11-24T21:03
72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
73 schema:sdPublisher N3a1749de4f584db2a64923560d715a3d
74 schema:url https://doi.org/10.1007/s11665-018-3471-y
75 sgo:license sg:explorer/license/
76 sgo:sdDataset articles
77 rdf:type schema:ScholarlyArticle
78 N05dbbdfe58a64b2e8d77160681691c84 rdf:first Nc066f97649ca4daeba3a1d11f0243e50
79 rdf:rest Necf9c0fe1d6841968b67279b65dec005
80 N1a4a43c3f7454b2ab46e858d29e482bf schema:name doi
81 schema:value 10.1007/s11665-018-3471-y
82 rdf:type schema:PropertyValue
83 N38d017a93f044f8ea4cf8020677a3e8e rdf:first sg:person.07420163560.19
84 rdf:rest rdf:nil
85 N3a1749de4f584db2a64923560d715a3d schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N4b254b9ac59a42b5823845a5435c226c schema:issueNumber 10
88 rdf:type schema:PublicationIssue
89 Nb3189d7f707c46e3ab171a121409eecf schema:volumeNumber 27
90 rdf:type schema:PublicationVolume
91 Nc066f97649ca4daeba3a1d11f0243e50 schema:affiliation grid-institutes:grid.410558.d
92 schema:familyName Prosgolitis
93 schema:givenName C. G.
94 rdf:type schema:Person
95 Nd1ec767550234bee9e419af86b147103 schema:name dimensions_id
96 schema:value pub.1105270379
97 rdf:type schema:PropertyValue
98 Necf9c0fe1d6841968b67279b65dec005 rdf:first sg:person.01265271754.16
99 rdf:rest N38d017a93f044f8ea4cf8020677a3e8e
100 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
101 schema:name Engineering
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
104 schema:name Materials Engineering
105 rdf:type schema:DefinedTerm
106 sg:journal.1042007 schema:issn 1059-9495
107 1544-1024
108 schema:name Journal of Materials Engineering and Performance
109 schema:publisher Springer Nature
110 rdf:type schema:Periodical
111 sg:person.01265271754.16 schema:affiliation grid-institutes:grid.89170.37
112 schema:familyName Lambrakos
113 schema:givenName S. G.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265271754.16
115 rdf:type schema:Person
116 sg:person.07420163560.19 schema:affiliation grid-institutes:grid.410558.d
117 schema:familyName Zervaki
118 schema:givenName A. D.
119 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420163560.19
120 rdf:type schema:Person
121 sg:pub.10.1007/s00170-015-7595-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1004674802
122 https://doi.org/10.1007/s00170-015-7595-z
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11661-002-0150-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009240989
125 https://doi.org/10.1007/s11661-002-0150-1
126 rdf:type schema:CreativeWork
127 sg:pub.10.1007/s11663-014-0089-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017054233
128 https://doi.org/10.1007/s11663-014-0089-9
129 rdf:type schema:CreativeWork
130 sg:pub.10.1007/s11665-016-1970-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006013261
131 https://doi.org/10.1007/s11665-016-1970-2
132 rdf:type schema:CreativeWork
133 grid-institutes:grid.410558.d schema:alternateName Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece
134 schema:name Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece
135 rdf:type schema:Organization
136 grid-institutes:grid.89170.37 schema:alternateName Materials Science and Technology Division, Naval Research Laboratory, Code 6390, 20375-5320, Washington, DC, USA
137 schema:name Materials Science and Technology Division, Naval Research Laboratory, Code 6390, 20375-5320, Washington, DC, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...