Possibility to Use Hydrothermally Synthesized CuFeS2 Nanocomposite as an Acceptor in Hybrid Solar Cell View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06

AUTHORS

Sayantan Sil, Arka Dey, Soumi Halder, Joydeep Datta, Partha Pratim Ray

ABSTRACT

Here we have approached the plausible use of CuFeS2 nanocomposite as an acceptor in organic–inorganic hybrid solar cell. To produce CuFeS2 nanocomposite, hydrothermal strategy was employed. The room-temperature XRD pattern approves the synthesized material as CuFeS2 with no phase impurity (JCPDS Card no: 37-0471). The elemental composition of the material was analyzed from the TEM-EDX data. The obtained selected area electron diffraction (SAED) planes harmonized with the XRD pattern of the synthesized product. Optical band gap (4.14 eV) of the composite from UV–Vis analysis depicts that the synthesized material is belonging to wide band gap semiconductor family. The HOMO (− 6.97 eV) and LUMO (− 2.93 eV) positions from electrochemical study reveal that there is a possibility of electron transfer from MEH-PPV to CuFeS2. The optical absorption and photoluminescence spectra of MEH-PPV:CuFeS2 (donor:acceptor) composite were recorded sequentially by varying weight ratios. The monotonic blue shifting of the absorption peak position indicated the interaction between donor and acceptor materials. The possibility of electron transfer from donor (MEH-PPV) to acceptor (CuFeS2) was approved with photoluminescence analysis. Subsequently, we have fabricated a hybrid solar cell by incorporating CuFeS2 nanocomposite with MEH-PPV in open atmosphere and obtained 0.3% power conversion efficiency. More... »

PAGES

2649-2654

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-018-3142-z

DOI

http://dx.doi.org/10.1007/s11665-018-3142-z

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1100475086


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Physics, Jadavpur University, 700 032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sil", 
        "givenName": "Sayantan", 
        "id": "sg:person.010163323017.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010163323017.81"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Physics, Jadavpur University, 700 032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dey", 
        "givenName": "Arka", 
        "id": "sg:person.013276774262.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013276774262.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Physics, Jadavpur University, 700 032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Halder", 
        "givenName": "Soumi", 
        "id": "sg:person.011202705705.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011202705705.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Physics, Jadavpur University, 700 032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Datta", 
        "givenName": "Joydeep", 
        "id": "sg:person.013544416403.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013544416403.22"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jadavpur University", 
          "id": "https://www.grid.ac/institutes/grid.216499.1", 
          "name": [
            "Department of Physics, Jadavpur University, 700 032, Kolkata, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ray", 
        "givenName": "Partha Pratim", 
        "id": "sg:person.014652265573.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014652265573.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.matlet.2013.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002069998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00339-004-3043-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004364261", 
          "https://doi.org/10.1007/s00339-004-3043-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ra16828c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007286633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3cc43456g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009777685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10854-013-1453-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013600129", 
          "https://doi.org/10.1007/s10854-013-1453-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1387-7003(99)00154-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017011047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0009-2614(01)01065-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019371591"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmst.2014.01.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025288583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/zkri.1932.82.1.188", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030902687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-015-8977-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032894938", 
          "https://doi.org/10.1007/s10853-015-8977-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4ra15337e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033439890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2014.07.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035574932"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0567740873002943", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040032076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2007.01.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049193959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja1057955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049483705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja1057955", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049483705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.inorgchem.5b00399", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055092408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja908371f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055862705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja908371f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055862705"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn101467p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056222746"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1582834", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057722804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3103768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057912372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.349175", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057961605"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3682503", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058000016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.112.1917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.112.1917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060421012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.1900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.1900", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060812715"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1069156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062445885"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/91/20004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064233204"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "Here we have approached the plausible use of CuFeS2 nanocomposite as an acceptor in organic\u2013inorganic hybrid solar cell. To produce CuFeS2 nanocomposite, hydrothermal strategy was employed. The room-temperature XRD pattern approves the synthesized material as CuFeS2 with no phase impurity (JCPDS Card no: 37-0471). The elemental composition of the material was analyzed from the TEM-EDX data. The obtained selected area electron diffraction (SAED) planes harmonized with the XRD pattern of the synthesized product. Optical band gap (4.14 eV) of the composite from UV\u2013Vis analysis depicts that the synthesized material is belonging to wide band gap semiconductor family. The HOMO (\u2212 6.97 eV) and LUMO (\u2212 2.93 eV) positions from electrochemical study reveal that there is a possibility of electron transfer from MEH-PPV to CuFeS2. The optical absorption and photoluminescence spectra of MEH-PPV:CuFeS2 (donor:acceptor) composite were recorded sequentially by varying weight ratios. The monotonic blue shifting of the absorption peak position indicated the interaction between donor and acceptor materials. The possibility of electron transfer from donor (MEH-PPV) to acceptor (CuFeS2) was approved with photoluminescence analysis. Subsequently, we have fabricated a hybrid solar cell by incorporating CuFeS2 nanocomposite with MEH-PPV in open atmosphere and obtained 0.3% power conversion efficiency.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11665-018-3142-z", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "27"
      }
    ], 
    "name": "Possibility to Use Hydrothermally Synthesized CuFeS2 Nanocomposite as an Acceptor in Hybrid Solar Cell", 
    "pagination": "2649-2654", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d0e83f4376c460c86ea741f047d410dbc80549c2d13611eb5c0d7865d31defee"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-018-3142-z"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1100475086"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-018-3142-z", 
      "https://app.dimensions.ai/details/publication/pub.1100475086"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007/s11665-018-3142-z"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-018-3142-z'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-018-3142-z'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-018-3142-z'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-018-3142-z'


 

This table displays all metadata directly associated to this object as RDF triples.

170 TRIPLES      21 PREDICATES      53 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-018-3142-z schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N495671b1ef6541329e92c2ec2dba4b61
4 schema:citation sg:pub.10.1007/s00339-004-3043-x
5 sg:pub.10.1007/s10853-015-8977-1
6 sg:pub.10.1007/s10854-013-1453-2
7 https://doi.org/10.1016/j.cplett.2014.07.003
8 https://doi.org/10.1016/j.jcrysgro.2007.01.043
9 https://doi.org/10.1016/j.jmst.2014.01.005
10 https://doi.org/10.1016/j.matlet.2013.02.015
11 https://doi.org/10.1016/s0009-2614(01)01065-x
12 https://doi.org/10.1016/s1387-7003(99)00154-9
13 https://doi.org/10.1021/acs.inorgchem.5b00399
14 https://doi.org/10.1021/ja1057955
15 https://doi.org/10.1021/ja908371f
16 https://doi.org/10.1021/nn101467p
17 https://doi.org/10.1039/c3cc43456g
18 https://doi.org/10.1039/c4ra15337e
19 https://doi.org/10.1039/c4ra16828c
20 https://doi.org/10.1063/1.1582834
21 https://doi.org/10.1063/1.3103768
22 https://doi.org/10.1063/1.349175
23 https://doi.org/10.1063/1.3682503
24 https://doi.org/10.1103/physrev.112.1917
25 https://doi.org/10.1103/physrevlett.76.1900
26 https://doi.org/10.1107/s0567740873002943
27 https://doi.org/10.1126/science.1069156
28 https://doi.org/10.1209/0295-5075/91/20004
29 https://doi.org/10.1524/zkri.1932.82.1.188
30 schema:datePublished 2018-06
31 schema:datePublishedReg 2018-06-01
32 schema:description Here we have approached the plausible use of CuFeS2 nanocomposite as an acceptor in organic–inorganic hybrid solar cell. To produce CuFeS2 nanocomposite, hydrothermal strategy was employed. The room-temperature XRD pattern approves the synthesized material as CuFeS2 with no phase impurity (JCPDS Card no: 37-0471). The elemental composition of the material was analyzed from the TEM-EDX data. The obtained selected area electron diffraction (SAED) planes harmonized with the XRD pattern of the synthesized product. Optical band gap (4.14 eV) of the composite from UV–Vis analysis depicts that the synthesized material is belonging to wide band gap semiconductor family. The HOMO (− 6.97 eV) and LUMO (− 2.93 eV) positions from electrochemical study reveal that there is a possibility of electron transfer from MEH-PPV to CuFeS2. The optical absorption and photoluminescence spectra of MEH-PPV:CuFeS2 (donor:acceptor) composite were recorded sequentially by varying weight ratios. The monotonic blue shifting of the absorption peak position indicated the interaction between donor and acceptor materials. The possibility of electron transfer from donor (MEH-PPV) to acceptor (CuFeS2) was approved with photoluminescence analysis. Subsequently, we have fabricated a hybrid solar cell by incorporating CuFeS2 nanocomposite with MEH-PPV in open atmosphere and obtained 0.3% power conversion efficiency.
33 schema:genre research_article
34 schema:inLanguage en
35 schema:isAccessibleForFree false
36 schema:isPartOf N8708e20187ad44bba6732826678e8744
37 Nbad1e092775f4991b4c7b73b93cefc8a
38 sg:journal.1042007
39 schema:name Possibility to Use Hydrothermally Synthesized CuFeS2 Nanocomposite as an Acceptor in Hybrid Solar Cell
40 schema:pagination 2649-2654
41 schema:productId N08e18e17ba704fe9b55be9ef06ff0b16
42 N125ec11b582b4fc68080bac29ca4986a
43 N2f27d52c32014e44a7183781ef027202
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1100475086
45 https://doi.org/10.1007/s11665-018-3142-z
46 schema:sdDatePublished 2019-04-10T13:06
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N77b10057bf09442ea6aa3fe81bd7b974
49 schema:url http://link.springer.com/10.1007/s11665-018-3142-z
50 sgo:license sg:explorer/license/
51 sgo:sdDataset articles
52 rdf:type schema:ScholarlyArticle
53 N0471de7d122b4c318582a127d7da1fe7 rdf:first sg:person.013276774262.18
54 rdf:rest Ncb770e6220b6476282c4e9203bd9dc34
55 N08e18e17ba704fe9b55be9ef06ff0b16 schema:name doi
56 schema:value 10.1007/s11665-018-3142-z
57 rdf:type schema:PropertyValue
58 N125ec11b582b4fc68080bac29ca4986a schema:name dimensions_id
59 schema:value pub.1100475086
60 rdf:type schema:PropertyValue
61 N2f27d52c32014e44a7183781ef027202 schema:name readcube_id
62 schema:value d0e83f4376c460c86ea741f047d410dbc80549c2d13611eb5c0d7865d31defee
63 rdf:type schema:PropertyValue
64 N495671b1ef6541329e92c2ec2dba4b61 rdf:first sg:person.010163323017.81
65 rdf:rest N0471de7d122b4c318582a127d7da1fe7
66 N75881dd424ac4c1888cd8629702ed3dc rdf:first sg:person.014652265573.50
67 rdf:rest rdf:nil
68 N77b10057bf09442ea6aa3fe81bd7b974 schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 N8708e20187ad44bba6732826678e8744 schema:volumeNumber 27
71 rdf:type schema:PublicationVolume
72 Na51bd27db4b64879a64ce91324e57cfc rdf:first sg:person.013544416403.22
73 rdf:rest N75881dd424ac4c1888cd8629702ed3dc
74 Nbad1e092775f4991b4c7b73b93cefc8a schema:issueNumber 6
75 rdf:type schema:PublicationIssue
76 Ncb770e6220b6476282c4e9203bd9dc34 rdf:first sg:person.011202705705.64
77 rdf:rest Na51bd27db4b64879a64ce91324e57cfc
78 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
79 schema:name Engineering
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
82 schema:name Materials Engineering
83 rdf:type schema:DefinedTerm
84 sg:journal.1042007 schema:issn 1059-9495
85 1544-1024
86 schema:name Journal of Materials Engineering and Performance
87 rdf:type schema:Periodical
88 sg:person.010163323017.81 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
89 schema:familyName Sil
90 schema:givenName Sayantan
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010163323017.81
92 rdf:type schema:Person
93 sg:person.011202705705.64 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
94 schema:familyName Halder
95 schema:givenName Soumi
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011202705705.64
97 rdf:type schema:Person
98 sg:person.013276774262.18 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
99 schema:familyName Dey
100 schema:givenName Arka
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013276774262.18
102 rdf:type schema:Person
103 sg:person.013544416403.22 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
104 schema:familyName Datta
105 schema:givenName Joydeep
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013544416403.22
107 rdf:type schema:Person
108 sg:person.014652265573.50 schema:affiliation https://www.grid.ac/institutes/grid.216499.1
109 schema:familyName Ray
110 schema:givenName Partha Pratim
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014652265573.50
112 rdf:type schema:Person
113 sg:pub.10.1007/s00339-004-3043-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1004364261
114 https://doi.org/10.1007/s00339-004-3043-x
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s10853-015-8977-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032894938
117 https://doi.org/10.1007/s10853-015-8977-1
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/s10854-013-1453-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013600129
120 https://doi.org/10.1007/s10854-013-1453-2
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.cplett.2014.07.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035574932
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jcrysgro.2007.01.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049193959
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.jmst.2014.01.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025288583
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.matlet.2013.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002069998
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/s0009-2614(01)01065-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1019371591
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1016/s1387-7003(99)00154-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017011047
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1021/acs.inorgchem.5b00399 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055092408
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1021/ja1057955 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049483705
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1021/ja908371f schema:sameAs https://app.dimensions.ai/details/publication/pub.1055862705
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1021/nn101467p schema:sameAs https://app.dimensions.ai/details/publication/pub.1056222746
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1039/c3cc43456g schema:sameAs https://app.dimensions.ai/details/publication/pub.1009777685
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1039/c4ra15337e schema:sameAs https://app.dimensions.ai/details/publication/pub.1033439890
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1039/c4ra16828c schema:sameAs https://app.dimensions.ai/details/publication/pub.1007286633
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1063/1.1582834 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057722804
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1063/1.3103768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057912372
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1063/1.349175 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057961605
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1063/1.3682503 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058000016
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrev.112.1917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060421012
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.76.1900 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060812715
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1107/s0567740873002943 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040032076
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1126/science.1069156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062445885
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1209/0295-5075/91/20004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064233204
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1524/zkri.1932.82.1.188 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030902687
167 rdf:type schema:CreativeWork
168 https://www.grid.ac/institutes/grid.216499.1 schema:alternateName Jadavpur University
169 schema:name Department of Physics, Jadavpur University, 700 032, Kolkata, India
170 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...