Microstructure and Mechanical Properties of Ultrafine-Grained Al-6061 Prepared Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-21

AUTHORS

Jianxun Lu, Xiaoyu Wu, Zhaozhi Wu, Zhiyuan Liu, Dengji Guo, Yan Lou, Shuangchen Ruan

ABSTRACT

Equal-channel angular pressing (ECAP) is an efficient technique to achieve grain refinement in a wide range of materials. However, the extrusion process requires an excessive extrusion force, the microstructure of ECAPed specimens scatters heterogeneously because of considerable fragmentation of the structure and strain heterogeneity, and the resultant ultrafine grains exhibit poor thermal stability. The intermittent ultrasonic-assisted ECAP (IU-ECAP) approach was proposed to address these issues. In this work, ECAP and IU-ECAP were applied to produce ultrafine-grained Al-6061 alloys, and the differences in their mechanical properties, microstructural characteristics, and thermal stability were investigated. Mechanical testing demonstrated that the necessary extrusion force for IU-ECAP was significantly reduced; even more, the microhardness and ultimate tensile strength were strengthened. In addition, the IU-ECAPed Al alloy exhibited a smaller grain size with a more homogeneous microstructure. X-ray diffraction analysis indicated that the intensities of the textures were weakened using IU-ECAP, and a more homogeneous microstructure and larger dislocation densities were obtained. Investigation of the thermal stability revealed that the ultrafine-grained materials produced using IU-ECAP recrystallized at higher temperature or after longer time; the materials thus exhibited improved thermal stability. More... »

PAGES

5107-5117

References to SciGraph publications

  • 2012-07-27. A Modification on ECAP Process by Incorporating Twist Channel in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 2010-01-28. Thermal stability of ultrafine grains size of pure copper obtained by equal-channel angular pressing in JOURNAL OF MATERIALS SCIENCE
  • 2015-10-07. Effect of Ultrasonic Vibration on Compression Behavior and Microstructural Characteristics of Commercially Pure Aluminum in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 2015-02-10. Improvement of ECAP process by imposing ultrasonic vibrations in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2013-03-28. Comparison Between Ultrasonic Vibration-Assisted Upsetting and Conventional Upsetting in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2012-12-01. Inhomogeneity Through Warm Equal Channel Angular Pressing in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 2016-06-30. Microstructure and Mechanical Properties of Ultrafine-Grained Copper Produced Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11665-017-2946-6

    DOI

    http://dx.doi.org/10.1007/s11665-017-2946-6

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1091890138


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Shenzhen Key Laboratory of Advanced Manufacturing Technology for Mold & Die, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China", 
                "Shenzhen Key Laboratory of Advanced Manufacturing Technology for Mold & Die, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lu", 
            "givenName": "Jianxun", 
            "id": "sg:person.07522156313.13", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07522156313.13"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen Key Laboratory of Advanced Manufacturing Technology for Mold & Die, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China", 
                "Shenzhen Key Laboratory of Advanced Manufacturing Technology for Mold & Die, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Xiaoyu", 
            "id": "sg:person.013601232137.16", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013601232137.16"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen Key Laboratory of Advanced Manufacturing Technology for Mold & Die, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China", 
                "Shenzhen Key Laboratory of Advanced Manufacturing Technology for Mold & Die, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Wu", 
            "givenName": "Zhaozhi", 
            "id": "sg:person.014103021313.61", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103021313.61"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen Key Laboratory of Advanced Manufacturing Technology for Mold & Die, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China", 
                "Shenzhen Key Laboratory of Advanced Manufacturing Technology for Mold & Die, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Zhiyuan", 
            "id": "sg:person.01022617373.00", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022617373.00"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen Key Laboratory of Advanced Manufacturing Technology for Mold & Die, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China", 
                "Shenzhen Key Laboratory of Advanced Manufacturing Technology for Mold & Die, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Guo", 
            "givenName": "Dengji", 
            "id": "sg:person.013244157601.56", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013244157601.56"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Shenzhen Key Laboratory of Advanced Manufacturing Technology for Mold & Die, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China", 
                "Shenzhen Key Laboratory of Advanced Manufacturing Technology for Mold & Die, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lou", 
            "givenName": "Yan", 
            "id": "sg:person.013226221553.59", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013226221553.59"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China", 
              "id": "http://www.grid.ac/institutes/grid.263488.3", 
              "name": [
                "Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People\u2019s Republic of China"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ruan", 
            "givenName": "Shuangchen", 
            "id": "sg:person.0624017672.23", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624017672.23"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s10853-009-4139-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014339139", 
              "https://doi.org/10.1007/s10853-009-4139-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-012-0436-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044168591", 
              "https://doi.org/10.1007/s11665-012-0436-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-015-1730-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015526443", 
              "https://doi.org/10.1007/s11665-015-1730-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-013-1651-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000634730", 
              "https://doi.org/10.1007/s11661-013-1651-9"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-016-3622-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052028016", 
              "https://doi.org/10.1007/s11661-016-3622-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-012-0323-z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007158322", 
              "https://doi.org/10.1007/s11665-012-0323-z"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-015-6848-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1017148140", 
              "https://doi.org/10.1007/s00170-015-6848-1"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-09-21", 
        "datePublishedReg": "2017-09-21", 
        "description": "Equal-channel angular pressing (ECAP) is an efficient technique to achieve grain refinement in a wide range of materials. However, the extrusion process requires an excessive extrusion force, the microstructure of ECAPed specimens scatters heterogeneously because of considerable fragmentation of the structure and strain heterogeneity, and the resultant ultrafine grains exhibit poor thermal stability. The intermittent ultrasonic-assisted ECAP (IU-ECAP) approach was proposed to address these issues. In this work, ECAP and IU-ECAP were applied to produce ultrafine-grained Al-6061 alloys, and the differences in their mechanical properties, microstructural characteristics, and thermal stability were investigated. Mechanical testing demonstrated that the necessary extrusion force for IU-ECAP was significantly reduced; even more, the microhardness and ultimate tensile strength were strengthened. In addition, the IU-ECAPed Al alloy exhibited a smaller grain size with a more homogeneous microstructure. X-ray diffraction analysis indicated that the intensities of the textures were weakened using IU-ECAP, and a more homogeneous microstructure and larger dislocation densities were obtained. Investigation of the thermal stability revealed that the ultrafine-grained materials produced using IU-ECAP recrystallized at higher temperature or after longer time; the materials thus exhibited improved thermal stability.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11665-017-2946-6", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.8253778", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8266580", 
            "type": "MonetaryGrant"
          }, 
          {
            "id": "sg:grant.8256620", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1042007", 
            "issn": [
              "1059-9495", 
              "1544-1024"
            ], 
            "name": "Journal of Materials Engineering and Performance", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "10", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "26"
          }
        ], 
        "keywords": [
          "homogeneous microstructure", 
          "mechanical properties", 
          "thermal stability", 
          "extrusion force", 
          "ultrafine-grained Al", 
          "ultrafine-grained materials", 
          "ultimate tensile strength", 
          "equal channel angular", 
          "small grain size", 
          "large dislocation density", 
          "poor thermal stability", 
          "ultrafine grains", 
          "grain refinement", 
          "Al alloy", 
          "channel angular", 
          "extrusion process", 
          "tensile strength", 
          "microstructural characteristics", 
          "mechanical testing", 
          "dislocation density", 
          "grain size", 
          "microstructure", 
          "high temperature", 
          "alloy", 
          "ray diffraction analysis", 
          "materials", 
          "angular", 
          "diffraction analysis", 
          "stability", 
          "ECAPed", 
          "efficient technique", 
          "microhardness", 
          "ECAP", 
          "ultrafine", 
          "force", 
          "properties", 
          "wide range", 
          "temperature", 
          "strength", 
          "grains", 
          "al", 
          "Prepared", 
          "density", 
          "long time", 
          "texture", 
          "scatter", 
          "structure", 
          "characteristics", 
          "technique", 
          "range", 
          "process", 
          "refinement", 
          "work", 
          "size", 
          "investigation", 
          "testing", 
          "considerable fragmentation", 
          "approach", 
          "time", 
          "addition", 
          "intensity", 
          "analysis", 
          "issues", 
          "equals", 
          "heterogeneity", 
          "differences", 
          "fragmentation"
        ], 
        "name": "Microstructure and Mechanical Properties of Ultrafine-Grained Al-6061 Prepared Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing", 
        "pagination": "5107-5117", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1091890138"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11665-017-2946-6"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11665-017-2946-6", 
          "https://app.dimensions.ai/details/publication/pub.1091890138"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-05-10T10:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_742.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11665-017-2946-6"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-017-2946-6'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-017-2946-6'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-017-2946-6'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-017-2946-6'


     

    This table displays all metadata directly associated to this object as RDF triples.

    203 TRIPLES      22 PREDICATES      99 URIs      84 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11665-017-2946-6 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N65e6e4630ca84491ab371d40a4e69a81
    4 schema:citation sg:pub.10.1007/s00170-015-6848-1
    5 sg:pub.10.1007/s10853-009-4139-7
    6 sg:pub.10.1007/s11661-013-1651-9
    7 sg:pub.10.1007/s11661-016-3622-4
    8 sg:pub.10.1007/s11665-012-0323-z
    9 sg:pub.10.1007/s11665-012-0436-4
    10 sg:pub.10.1007/s11665-015-1730-8
    11 schema:datePublished 2017-09-21
    12 schema:datePublishedReg 2017-09-21
    13 schema:description Equal-channel angular pressing (ECAP) is an efficient technique to achieve grain refinement in a wide range of materials. However, the extrusion process requires an excessive extrusion force, the microstructure of ECAPed specimens scatters heterogeneously because of considerable fragmentation of the structure and strain heterogeneity, and the resultant ultrafine grains exhibit poor thermal stability. The intermittent ultrasonic-assisted ECAP (IU-ECAP) approach was proposed to address these issues. In this work, ECAP and IU-ECAP were applied to produce ultrafine-grained Al-6061 alloys, and the differences in their mechanical properties, microstructural characteristics, and thermal stability were investigated. Mechanical testing demonstrated that the necessary extrusion force for IU-ECAP was significantly reduced; even more, the microhardness and ultimate tensile strength were strengthened. In addition, the IU-ECAPed Al alloy exhibited a smaller grain size with a more homogeneous microstructure. X-ray diffraction analysis indicated that the intensities of the textures were weakened using IU-ECAP, and a more homogeneous microstructure and larger dislocation densities were obtained. Investigation of the thermal stability revealed that the ultrafine-grained materials produced using IU-ECAP recrystallized at higher temperature or after longer time; the materials thus exhibited improved thermal stability.
    14 schema:genre article
    15 schema:inLanguage en
    16 schema:isAccessibleForFree false
    17 schema:isPartOf Nc156f7281e984c539839ba034a58309c
    18 Nfdd6ae0e29ce4d1cb8f8bd3923beae01
    19 sg:journal.1042007
    20 schema:keywords Al alloy
    21 ECAP
    22 ECAPed
    23 Prepared
    24 addition
    25 al
    26 alloy
    27 analysis
    28 angular
    29 approach
    30 channel angular
    31 characteristics
    32 considerable fragmentation
    33 density
    34 differences
    35 diffraction analysis
    36 dislocation density
    37 efficient technique
    38 equal channel angular
    39 equals
    40 extrusion force
    41 extrusion process
    42 force
    43 fragmentation
    44 grain refinement
    45 grain size
    46 grains
    47 heterogeneity
    48 high temperature
    49 homogeneous microstructure
    50 intensity
    51 investigation
    52 issues
    53 large dislocation density
    54 long time
    55 materials
    56 mechanical properties
    57 mechanical testing
    58 microhardness
    59 microstructural characteristics
    60 microstructure
    61 poor thermal stability
    62 process
    63 properties
    64 range
    65 ray diffraction analysis
    66 refinement
    67 scatter
    68 size
    69 small grain size
    70 stability
    71 strength
    72 structure
    73 technique
    74 temperature
    75 tensile strength
    76 testing
    77 texture
    78 thermal stability
    79 time
    80 ultimate tensile strength
    81 ultrafine
    82 ultrafine grains
    83 ultrafine-grained Al
    84 ultrafine-grained materials
    85 wide range
    86 work
    87 schema:name Microstructure and Mechanical Properties of Ultrafine-Grained Al-6061 Prepared Using Intermittent Ultrasonic-Assisted Equal-Channel Angular Pressing
    88 schema:pagination 5107-5117
    89 schema:productId Nb986ace90b574db69a45ef9748f925a2
    90 Ne3f12015e6c140b7af9e6191a7c84ebd
    91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091890138
    92 https://doi.org/10.1007/s11665-017-2946-6
    93 schema:sdDatePublished 2022-05-10T10:15
    94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    95 schema:sdPublisher N4ed0d03c6a5a488f96df02dfc1c8b45f
    96 schema:url https://doi.org/10.1007/s11665-017-2946-6
    97 sgo:license sg:explorer/license/
    98 sgo:sdDataset articles
    99 rdf:type schema:ScholarlyArticle
    100 N2da01ecb912c46e19018efbd9d463f6a rdf:first sg:person.013226221553.59
    101 rdf:rest N53c3faa0cf014a34bd560747a71ad2be
    102 N3ff024f9f6344e27a48866ca8bfb02b1 rdf:first sg:person.013601232137.16
    103 rdf:rest N953e3aa814ef47c790375624f9536492
    104 N4ed0d03c6a5a488f96df02dfc1c8b45f schema:name Springer Nature - SN SciGraph project
    105 rdf:type schema:Organization
    106 N53c3faa0cf014a34bd560747a71ad2be rdf:first sg:person.0624017672.23
    107 rdf:rest rdf:nil
    108 N65e6e4630ca84491ab371d40a4e69a81 rdf:first sg:person.07522156313.13
    109 rdf:rest N3ff024f9f6344e27a48866ca8bfb02b1
    110 N953e3aa814ef47c790375624f9536492 rdf:first sg:person.014103021313.61
    111 rdf:rest Nd2634454122545d7a9b68c1444f494b7
    112 Nb986ace90b574db69a45ef9748f925a2 schema:name dimensions_id
    113 schema:value pub.1091890138
    114 rdf:type schema:PropertyValue
    115 Nbddaf1e8bbfe42ebb466e25aca6498d8 rdf:first sg:person.013244157601.56
    116 rdf:rest N2da01ecb912c46e19018efbd9d463f6a
    117 Nc156f7281e984c539839ba034a58309c schema:volumeNumber 26
    118 rdf:type schema:PublicationVolume
    119 Nd2634454122545d7a9b68c1444f494b7 rdf:first sg:person.01022617373.00
    120 rdf:rest Nbddaf1e8bbfe42ebb466e25aca6498d8
    121 Ne3f12015e6c140b7af9e6191a7c84ebd schema:name doi
    122 schema:value 10.1007/s11665-017-2946-6
    123 rdf:type schema:PropertyValue
    124 Nfdd6ae0e29ce4d1cb8f8bd3923beae01 schema:issueNumber 10
    125 rdf:type schema:PublicationIssue
    126 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    127 schema:name Engineering
    128 rdf:type schema:DefinedTerm
    129 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    130 schema:name Materials Engineering
    131 rdf:type schema:DefinedTerm
    132 sg:grant.8253778 http://pending.schema.org/fundedItem sg:pub.10.1007/s11665-017-2946-6
    133 rdf:type schema:MonetaryGrant
    134 sg:grant.8256620 http://pending.schema.org/fundedItem sg:pub.10.1007/s11665-017-2946-6
    135 rdf:type schema:MonetaryGrant
    136 sg:grant.8266580 http://pending.schema.org/fundedItem sg:pub.10.1007/s11665-017-2946-6
    137 rdf:type schema:MonetaryGrant
    138 sg:journal.1042007 schema:issn 1059-9495
    139 1544-1024
    140 schema:name Journal of Materials Engineering and Performance
    141 schema:publisher Springer Nature
    142 rdf:type schema:Periodical
    143 sg:person.01022617373.00 schema:affiliation grid-institutes:grid.263488.3
    144 schema:familyName Liu
    145 schema:givenName Zhiyuan
    146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01022617373.00
    147 rdf:type schema:Person
    148 sg:person.013226221553.59 schema:affiliation grid-institutes:grid.263488.3
    149 schema:familyName Lou
    150 schema:givenName Yan
    151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013226221553.59
    152 rdf:type schema:Person
    153 sg:person.013244157601.56 schema:affiliation grid-institutes:grid.263488.3
    154 schema:familyName Guo
    155 schema:givenName Dengji
    156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013244157601.56
    157 rdf:type schema:Person
    158 sg:person.013601232137.16 schema:affiliation grid-institutes:grid.263488.3
    159 schema:familyName Wu
    160 schema:givenName Xiaoyu
    161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013601232137.16
    162 rdf:type schema:Person
    163 sg:person.014103021313.61 schema:affiliation grid-institutes:grid.263488.3
    164 schema:familyName Wu
    165 schema:givenName Zhaozhi
    166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014103021313.61
    167 rdf:type schema:Person
    168 sg:person.0624017672.23 schema:affiliation grid-institutes:grid.263488.3
    169 schema:familyName Ruan
    170 schema:givenName Shuangchen
    171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0624017672.23
    172 rdf:type schema:Person
    173 sg:person.07522156313.13 schema:affiliation grid-institutes:grid.263488.3
    174 schema:familyName Lu
    175 schema:givenName Jianxun
    176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07522156313.13
    177 rdf:type schema:Person
    178 sg:pub.10.1007/s00170-015-6848-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017148140
    179 https://doi.org/10.1007/s00170-015-6848-1
    180 rdf:type schema:CreativeWork
    181 sg:pub.10.1007/s10853-009-4139-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014339139
    182 https://doi.org/10.1007/s10853-009-4139-7
    183 rdf:type schema:CreativeWork
    184 sg:pub.10.1007/s11661-013-1651-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000634730
    185 https://doi.org/10.1007/s11661-013-1651-9
    186 rdf:type schema:CreativeWork
    187 sg:pub.10.1007/s11661-016-3622-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052028016
    188 https://doi.org/10.1007/s11661-016-3622-4
    189 rdf:type schema:CreativeWork
    190 sg:pub.10.1007/s11665-012-0323-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1007158322
    191 https://doi.org/10.1007/s11665-012-0323-z
    192 rdf:type schema:CreativeWork
    193 sg:pub.10.1007/s11665-012-0436-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044168591
    194 https://doi.org/10.1007/s11665-012-0436-4
    195 rdf:type schema:CreativeWork
    196 sg:pub.10.1007/s11665-015-1730-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015526443
    197 https://doi.org/10.1007/s11665-015-1730-8
    198 rdf:type schema:CreativeWork
    199 grid-institutes:grid.263488.3 schema:alternateName Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People’s Republic of China
    200 Shenzhen Key Laboratory of Advanced Manufacturing Technology for Mold & Die, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People’s Republic of China
    201 schema:name Guangdong Provincial Key Laboratory of Micro/Nano Optomechatronics Engineering, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People’s Republic of China
    202 Shenzhen Key Laboratory of Advanced Manufacturing Technology for Mold & Die, Shenzhen University, Nan-hai Ave 3688, 518060, Shenzhen, Guangdong, People’s Republic of China
    203 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...