AA6082 to DX56-Steel Laser Brazing: Process Parameter–Intermetallic Formation Correlation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-09-05

AUTHORS

D. Narsimhachary, S. Pal, S. M. Shariff, G. Padmanabham, A. Basu

ABSTRACT

In the present study, laser-brazed AA6082 to DX56-galvanized steel joints were investigated to understand the influence of process parameters on joint strength in terms of intermetallic layer formation. 1.5-mm-thick sheet of aluminum alloy (AA6082-T6) and galvanized steel (DX56) sheet of 0.7 mm thickness were laser-brazed with 1.5-mm-diameter Al-12% Si solid filler wire. During laser brazing, laser power (4.6 kW) and wire feed rate (3.4 m/min) were kept constant with a varying laser scan speed of 3.5, 3, 2.5, 2, 1.5, and 1 m/min. Microstructure of brazed joint reveals epitaxial growth at the aluminum side and intermetallic layer formation at steel interface. Intermetallic layer formation was confirmed by EDS analysis and XRD study. Hardness profile showed hardness drop in filler region, and failure during tensile testing was initiated through the filler region near the steel interface. As per both experimental study and numerical analysis, it was observed that intermetallic layer thickness decreases with increasing brazing speed. Zn vaporization from galvanized steel interface also affected the joint strength. It was found that high laser scan speed or faster cooling rate can be chosen for suppressing intermetallic layer formation or at least decreasing the layer thickness which results in improved mechanical properties. More... »

PAGES

4274-4281

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-017-2902-5

DOI

http://dx.doi.org/10.1007/s11665-017-2902-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1091494738


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Metallurgical and Materials Engineering, National Institute of Technology, 769008, Rourkela, Odisha, India", 
          "id": "http://www.grid.ac/institutes/grid.444703.0", 
          "name": [
            "Department of Metallurgical and Materials Engineering, National Institute of Technology, 769008, Rourkela, Odisha, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Narsimhachary", 
        "givenName": "D.", 
        "id": "sg:person.011510013663.05", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011510013663.05"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Metallurgical and Materials Engineering, National Institute of Technology, 769008, Rourkela, Odisha, India", 
          "id": "http://www.grid.ac/institutes/grid.444703.0", 
          "name": [
            "Department of Metallurgical and Materials Engineering, National Institute of Technology, 769008, Rourkela, Odisha, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pal", 
        "givenName": "S.", 
        "id": "sg:person.010671536123.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010671536123.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI), 500005, Hyderabad, Telangana, India", 
          "id": "http://www.grid.ac/institutes/grid.466869.3", 
          "name": [
            "International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI), 500005, Hyderabad, Telangana, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shariff", 
        "givenName": "S. M.", 
        "id": "sg:person.016012012275.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016012012275.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI), 500005, Hyderabad, Telangana, India", 
          "id": "http://www.grid.ac/institutes/grid.466869.3", 
          "name": [
            "International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI), 500005, Hyderabad, Telangana, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Padmanabham", 
        "givenName": "G.", 
        "id": "sg:person.07442107015.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07442107015.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Metallurgical and Materials Engineering, National Institute of Technology, 769008, Rourkela, Odisha, India", 
          "id": "http://www.grid.ac/institutes/grid.444703.0", 
          "name": [
            "Department of Metallurgical and Materials Engineering, National Institute of Technology, 769008, Rourkela, Odisha, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Basu", 
        "givenName": "A.", 
        "id": "sg:person.011065176555.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011065176555.98"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1533/wint.2004.3315", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034718594", 
          "https://doi.org/10.1533/wint.2004.3315"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-09-05", 
    "datePublishedReg": "2017-09-05", 
    "description": "In the present study, laser-brazed AA6082 to DX56-galvanized steel joints were investigated to understand the influence of process parameters on joint strength in terms of intermetallic layer formation. 1.5-mm-thick sheet of aluminum alloy (AA6082-T6) and galvanized steel (DX56) sheet of 0.7\u00a0mm thickness were laser-brazed with 1.5-mm-diameter Al-12% Si solid filler wire. During laser brazing, laser power (4.6\u00a0kW) and wire feed rate (3.4\u00a0m/min) were kept constant with a varying laser scan speed of 3.5, 3, 2.5, 2, 1.5, and 1\u00a0m/min. Microstructure of brazed joint reveals epitaxial growth at the aluminum side and intermetallic layer formation at steel interface. Intermetallic layer formation was confirmed by EDS analysis and XRD study. Hardness profile showed hardness drop in filler region, and failure during tensile testing was initiated through the filler region near the steel interface. As per both experimental study and numerical analysis, it was observed that intermetallic layer thickness decreases with increasing brazing speed. Zn vaporization from galvanized steel interface also affected the joint strength. It was found that high laser scan speed or faster cooling rate can be chosen for suppressing intermetallic layer formation or at least decreasing the layer thickness which results in improved mechanical properties.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11665-017-2902-5", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "keywords": [
      "intermetallic layer formation", 
      "laser scan speed", 
      "steel interface", 
      "layer formation", 
      "joint strength", 
      "laser brazing", 
      "filler region", 
      "high laser scan speed", 
      "scan speed", 
      "layer thickness", 
      "wire feed rate", 
      "intermetallic layer thickness", 
      "galvanized steel sheets", 
      "improved mechanical properties", 
      "fast cooling rate", 
      "steel joints", 
      "filler wire", 
      "brazing speed", 
      "Zn vaporization", 
      "steel sheets", 
      "aluminum alloy", 
      "aluminum side", 
      "hardness profile", 
      "mechanical properties", 
      "hardness drop", 
      "process parameters", 
      "tensile testing", 
      "feed rate", 
      "epitaxial growth", 
      "Al-12", 
      "thick sheets", 
      "cooling rate", 
      "EDS analysis", 
      "numerical analysis", 
      "laser power", 
      "AA6082", 
      "brazing", 
      "experimental study", 
      "thickness", 
      "XRD studies", 
      "speed", 
      "interface", 
      "sheets", 
      "strength", 
      "alloy", 
      "microstructure", 
      "wire", 
      "vaporization", 
      "drop", 
      "joints", 
      "formation", 
      "properties", 
      "power", 
      "parameters", 
      "influence", 
      "rate", 
      "analysis", 
      "testing", 
      "side", 
      "region", 
      "failure", 
      "min", 
      "profile", 
      "terms", 
      "study", 
      "growth", 
      "present study", 
      "correlation"
    ], 
    "name": "AA6082 to DX56-Steel Laser Brazing: Process Parameter\u2013Intermetallic Formation Correlation", 
    "pagination": "4274-4281", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1091494738"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-017-2902-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-017-2902-5", 
      "https://app.dimensions.ai/details/publication/pub.1091494738"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-08-04T17:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220804/entities/gbq_results/article/article_739.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11665-017-2902-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-017-2902-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-017-2902-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-017-2902-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-017-2902-5'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      21 PREDICATES      93 URIs      84 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-017-2902-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb492a82a2a0948869414899f9bbc45d4
4 schema:citation sg:pub.10.1533/wint.2004.3315
5 schema:datePublished 2017-09-05
6 schema:datePublishedReg 2017-09-05
7 schema:description In the present study, laser-brazed AA6082 to DX56-galvanized steel joints were investigated to understand the influence of process parameters on joint strength in terms of intermetallic layer formation. 1.5-mm-thick sheet of aluminum alloy (AA6082-T6) and galvanized steel (DX56) sheet of 0.7 mm thickness were laser-brazed with 1.5-mm-diameter Al-12% Si solid filler wire. During laser brazing, laser power (4.6 kW) and wire feed rate (3.4 m/min) were kept constant with a varying laser scan speed of 3.5, 3, 2.5, 2, 1.5, and 1 m/min. Microstructure of brazed joint reveals epitaxial growth at the aluminum side and intermetallic layer formation at steel interface. Intermetallic layer formation was confirmed by EDS analysis and XRD study. Hardness profile showed hardness drop in filler region, and failure during tensile testing was initiated through the filler region near the steel interface. As per both experimental study and numerical analysis, it was observed that intermetallic layer thickness decreases with increasing brazing speed. Zn vaporization from galvanized steel interface also affected the joint strength. It was found that high laser scan speed or faster cooling rate can be chosen for suppressing intermetallic layer formation or at least decreasing the layer thickness which results in improved mechanical properties.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N38740749cd3c4fb2921b531580c9589a
11 Nd4633c0418e24b399eef88934ccf66b2
12 sg:journal.1042007
13 schema:keywords AA6082
14 Al-12
15 EDS analysis
16 XRD studies
17 Zn vaporization
18 alloy
19 aluminum alloy
20 aluminum side
21 analysis
22 brazing
23 brazing speed
24 cooling rate
25 correlation
26 drop
27 epitaxial growth
28 experimental study
29 failure
30 fast cooling rate
31 feed rate
32 filler region
33 filler wire
34 formation
35 galvanized steel sheets
36 growth
37 hardness drop
38 hardness profile
39 high laser scan speed
40 improved mechanical properties
41 influence
42 interface
43 intermetallic layer formation
44 intermetallic layer thickness
45 joint strength
46 joints
47 laser brazing
48 laser power
49 laser scan speed
50 layer formation
51 layer thickness
52 mechanical properties
53 microstructure
54 min
55 numerical analysis
56 parameters
57 power
58 present study
59 process parameters
60 profile
61 properties
62 rate
63 region
64 scan speed
65 sheets
66 side
67 speed
68 steel interface
69 steel joints
70 steel sheets
71 strength
72 study
73 tensile testing
74 terms
75 testing
76 thick sheets
77 thickness
78 vaporization
79 wire
80 wire feed rate
81 schema:name AA6082 to DX56-Steel Laser Brazing: Process Parameter–Intermetallic Formation Correlation
82 schema:pagination 4274-4281
83 schema:productId N0f8ec0bf5e5d401082181ef691b1c290
84 N27c42c6c06e54f909d94c92f68eb2ca9
85 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091494738
86 https://doi.org/10.1007/s11665-017-2902-5
87 schema:sdDatePublished 2022-08-04T17:05
88 schema:sdLicense https://scigraph.springernature.com/explorer/license/
89 schema:sdPublisher N83c49dcb5a0b4b429792a3e5c325bdb1
90 schema:url https://doi.org/10.1007/s11665-017-2902-5
91 sgo:license sg:explorer/license/
92 sgo:sdDataset articles
93 rdf:type schema:ScholarlyArticle
94 N0f8ec0bf5e5d401082181ef691b1c290 schema:name doi
95 schema:value 10.1007/s11665-017-2902-5
96 rdf:type schema:PropertyValue
97 N27c42c6c06e54f909d94c92f68eb2ca9 schema:name dimensions_id
98 schema:value pub.1091494738
99 rdf:type schema:PropertyValue
100 N38740749cd3c4fb2921b531580c9589a schema:volumeNumber 26
101 rdf:type schema:PublicationVolume
102 N83c49dcb5a0b4b429792a3e5c325bdb1 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 Nac992e4dde1f41deba7057f43d69382a rdf:first sg:person.07442107015.57
105 rdf:rest Nd00d7c007a624fc7a98014a596252a8f
106 Nb492a82a2a0948869414899f9bbc45d4 rdf:first sg:person.011510013663.05
107 rdf:rest Ne995492c1b2a4e188cbfbd63616546a1
108 Nd00d7c007a624fc7a98014a596252a8f rdf:first sg:person.011065176555.98
109 rdf:rest rdf:nil
110 Nd066940bea4745f883f951a8ca41e644 rdf:first sg:person.016012012275.53
111 rdf:rest Nac992e4dde1f41deba7057f43d69382a
112 Nd4633c0418e24b399eef88934ccf66b2 schema:issueNumber 9
113 rdf:type schema:PublicationIssue
114 Ne995492c1b2a4e188cbfbd63616546a1 rdf:first sg:person.010671536123.82
115 rdf:rest Nd066940bea4745f883f951a8ca41e644
116 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
117 schema:name Engineering
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
120 schema:name Materials Engineering
121 rdf:type schema:DefinedTerm
122 sg:journal.1042007 schema:issn 1059-9495
123 1544-1024
124 schema:name Journal of Materials Engineering and Performance
125 schema:publisher Springer Nature
126 rdf:type schema:Periodical
127 sg:person.010671536123.82 schema:affiliation grid-institutes:grid.444703.0
128 schema:familyName Pal
129 schema:givenName S.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010671536123.82
131 rdf:type schema:Person
132 sg:person.011065176555.98 schema:affiliation grid-institutes:grid.444703.0
133 schema:familyName Basu
134 schema:givenName A.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011065176555.98
136 rdf:type schema:Person
137 sg:person.011510013663.05 schema:affiliation grid-institutes:grid.444703.0
138 schema:familyName Narsimhachary
139 schema:givenName D.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011510013663.05
141 rdf:type schema:Person
142 sg:person.016012012275.53 schema:affiliation grid-institutes:grid.466869.3
143 schema:familyName Shariff
144 schema:givenName S. M.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016012012275.53
146 rdf:type schema:Person
147 sg:person.07442107015.57 schema:affiliation grid-institutes:grid.466869.3
148 schema:familyName Padmanabham
149 schema:givenName G.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07442107015.57
151 rdf:type schema:Person
152 sg:pub.10.1533/wint.2004.3315 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034718594
153 https://doi.org/10.1533/wint.2004.3315
154 rdf:type schema:CreativeWork
155 grid-institutes:grid.444703.0 schema:alternateName Department of Metallurgical and Materials Engineering, National Institute of Technology, 769008, Rourkela, Odisha, India
156 schema:name Department of Metallurgical and Materials Engineering, National Institute of Technology, 769008, Rourkela, Odisha, India
157 rdf:type schema:Organization
158 grid-institutes:grid.466869.3 schema:alternateName International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI), 500005, Hyderabad, Telangana, India
159 schema:name International Advanced Research Centre for Powder Metallurgy & New Materials (ARCI), 500005, Hyderabad, Telangana, India
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...