Wear Behavior of Medium Carbon Steel with Biomimetic Surface Under Starved Lubricated Conditions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-07

AUTHORS

Zhihui Zhang, Feixian Shao, Yunhong Liang, Pengyu Lin, Xin Tong, Luquan Ren

ABSTRACT

Friction and wear under starved lubrication condition are both key life-related factors for mechanical performance of many structural parts. In this paper, different surface morphologies on medium carbon steel were fabricated using laser, inspired by the surface coupling effect of biological system. The friction and sliding wear behaviors of biomimetic specimens (characterized by convex and concave units on the specimen surface) were studied under starved lubrication condition. The stress distribution on different sliding surfaces under sliding friction was studied using finite element method. The results showed that the tribological performance of studied surfaces under starved lubrication condition depended not only on the surface morphology but also on the structure of biomimetic units below surface (subsurface structure). The friction coefficient of biomimetic surface was effectively reduced by the concave unit depth, while the refined microstructure with higher hardness led to the much better wear resistance. In addition to lubricant reserving and wear debris trapping effect derived from the surface concave morphology, it was believed that the well-formed subsurface structure of biomimetic units could carry much heavy loads against tribopair, which enhanced the function of surface topography and resulted in complementary lubrication in the wear contact area. The uniform stress distribution on the entire biomimetic surface also played an important role in stabilizing the friction coefficient and reducing the wear cracks. More... »

PAGES

3420-3430

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-017-2607-9

DOI

http://dx.doi.org/10.1007/s11665-017-2607-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085983094


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China", 
            "State Key Laboratory of Automotive Simulation and Control, Jilin University, 130025, Changchun, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Zhihui", 
        "id": "sg:person.013574730167.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013574730167.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shao", 
        "givenName": "Feixian", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China", 
            "State Key Laboratory of Automotive Simulation and Control, Jilin University, 130025, Changchun, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Liang", 
        "givenName": "Yunhong", 
        "id": "sg:person.010514113011.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010514113011.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "Pengyu", 
        "id": "sg:person.010552765413.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552765413.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Guangzhou Research Institute of Non-ferrous Metals", 
          "id": "https://www.grid.ac/institutes/grid.464312.6", 
          "name": [
            "The National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangzhou Research Institute of Non-ferrous Metals, 510651, Guangzhou, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tong", 
        "givenName": "Xin", 
        "id": "sg:person.012577306363.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012577306363.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Jilin University", 
          "id": "https://www.grid.ac/institutes/grid.64924.3d", 
          "name": [
            "The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, 130025, Changchun, People\u2019s Republic of China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ren", 
        "givenName": "Luquan", 
        "id": "sg:person.01042771377.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042771377.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11012-012-9614-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004743830", 
          "https://doi.org/10.1007/s11012-012-9614-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2007.09.102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005921495"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.triboint.2011.08.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005957775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2013.04.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006868502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2009.11.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008628720"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.triboint.2012.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009614213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1369-7021(05)71077-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010082892"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2012.05.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011421105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/met6090227", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022746331"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2012.10.006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023598512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.05.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026219520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-009-0042-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034259707", 
          "https://doi.org/10.1007/s11431-009-0042-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.triboint.2006.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034699973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2007.05.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036128961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2006.06.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038194162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jascer.2013.10.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039505470"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.11.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042119827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.wear.2012.11.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042335328"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2005.09.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043361387"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2013.02.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043522987"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.triboint.2012.02.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043994434"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11431-013-5449-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046985879", 
          "https://doi.org/10.1007/s11431-013-5449-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2006.05.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047118433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.1828070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062075094"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/jera.19.103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072054853"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-07", 
    "datePublishedReg": "2017-07-01", 
    "description": "Friction and wear under starved lubrication condition are both key life-related factors for mechanical performance of many structural parts. In this paper, different surface morphologies on medium carbon steel were fabricated using laser, inspired by the surface coupling effect of biological system. The friction and sliding wear behaviors of biomimetic specimens (characterized by convex and concave units on the specimen surface) were studied under starved lubrication condition. The stress distribution on different sliding surfaces under sliding friction was studied using finite element method. The results showed that the tribological performance of studied surfaces under starved lubrication condition depended not only on the surface morphology but also on the structure of biomimetic units below surface (subsurface structure). The friction coefficient of biomimetic surface was effectively reduced by the concave unit depth, while the refined microstructure with higher hardness led to the much better wear resistance. In addition to lubricant reserving and wear debris trapping effect derived from the surface concave morphology, it was believed that the well-formed subsurface structure of biomimetic units could carry much heavy loads against tribopair, which enhanced the function of surface topography and resulted in complementary lubrication in the wear contact area. The uniform stress distribution on the entire biomimetic surface also played an important role in stabilizing the friction coefficient and reducing the wear cracks.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11665-017-2607-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "26"
      }
    ], 
    "name": "Wear Behavior of Medium Carbon Steel with Biomimetic Surface Under Starved Lubricated Conditions", 
    "pagination": "3420-3430", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "571527944d4ee46d40bda3f3259f58fbe28a886f1371436556f3ec340974c9e1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-017-2607-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085983094"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-017-2607-9", 
      "https://app.dimensions.ai/details/publication/pub.1085983094"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:03", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89824_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11665-017-2607-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-017-2607-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-017-2607-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-017-2607-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-017-2607-9'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      52 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-017-2607-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N01004768c99343e0ab648c5c1fa1c027
4 schema:citation sg:pub.10.1007/s11012-012-9614-6
5 sg:pub.10.1007/s11431-009-0042-3
6 sg:pub.10.1007/s11431-013-5449-1
7 https://doi.org/10.1016/j.apsusc.2007.05.008
8 https://doi.org/10.1016/j.apsusc.2007.09.102
9 https://doi.org/10.1016/j.apsusc.2009.11.041
10 https://doi.org/10.1016/j.apsusc.2013.02.013
11 https://doi.org/10.1016/j.jascer.2013.10.004
12 https://doi.org/10.1016/j.matdes.2012.05.012
13 https://doi.org/10.1016/j.matdes.2013.05.077
14 https://doi.org/10.1016/j.matdes.2013.11.034
15 https://doi.org/10.1016/j.msea.2005.09.042
16 https://doi.org/10.1016/j.msea.2012.10.006
17 https://doi.org/10.1016/j.surfcoat.2006.05.020
18 https://doi.org/10.1016/j.triboint.2006.11.002
19 https://doi.org/10.1016/j.triboint.2011.08.005
20 https://doi.org/10.1016/j.triboint.2012.02.020
21 https://doi.org/10.1016/j.triboint.2012.07.020
22 https://doi.org/10.1016/j.wear.2006.06.019
23 https://doi.org/10.1016/j.wear.2012.11.003
24 https://doi.org/10.1016/j.wear.2013.04.035
25 https://doi.org/10.1016/s1369-7021(05)71077-4
26 https://doi.org/10.1115/1.1828070
27 https://doi.org/10.3390/met6090227
28 https://doi.org/10.4028/www.scientific.net/jera.19.103
29 schema:datePublished 2017-07
30 schema:datePublishedReg 2017-07-01
31 schema:description Friction and wear under starved lubrication condition are both key life-related factors for mechanical performance of many structural parts. In this paper, different surface morphologies on medium carbon steel were fabricated using laser, inspired by the surface coupling effect of biological system. The friction and sliding wear behaviors of biomimetic specimens (characterized by convex and concave units on the specimen surface) were studied under starved lubrication condition. The stress distribution on different sliding surfaces under sliding friction was studied using finite element method. The results showed that the tribological performance of studied surfaces under starved lubrication condition depended not only on the surface morphology but also on the structure of biomimetic units below surface (subsurface structure). The friction coefficient of biomimetic surface was effectively reduced by the concave unit depth, while the refined microstructure with higher hardness led to the much better wear resistance. In addition to lubricant reserving and wear debris trapping effect derived from the surface concave morphology, it was believed that the well-formed subsurface structure of biomimetic units could carry much heavy loads against tribopair, which enhanced the function of surface topography and resulted in complementary lubrication in the wear contact area. The uniform stress distribution on the entire biomimetic surface also played an important role in stabilizing the friction coefficient and reducing the wear cracks.
32 schema:genre research_article
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf Nbc133277777e4fef9b7dc8b24cfcf2a5
36 Nf735c79897614640980997caf3a8e973
37 sg:journal.1042007
38 schema:name Wear Behavior of Medium Carbon Steel with Biomimetic Surface Under Starved Lubricated Conditions
39 schema:pagination 3420-3430
40 schema:productId N3d0497cbeb5244dbbe681212b37cd615
41 N883c79cd6be44ac1999c21d06b545308
42 N8fc5153647b84a93ae0b14affafdd215
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085983094
44 https://doi.org/10.1007/s11665-017-2607-9
45 schema:sdDatePublished 2019-04-11T10:03
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N01fb7205f9294e45b2b90c3a17da59f9
48 schema:url https://link.springer.com/10.1007%2Fs11665-017-2607-9
49 sgo:license sg:explorer/license/
50 sgo:sdDataset articles
51 rdf:type schema:ScholarlyArticle
52 N01004768c99343e0ab648c5c1fa1c027 rdf:first sg:person.013574730167.55
53 rdf:rest N2e419eebe797427bbd137e6991e24233
54 N01fb7205f9294e45b2b90c3a17da59f9 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N16bf4ff7f2e64e3eba9d461c04286684 rdf:first sg:person.010552765413.11
57 rdf:rest N5d8453c1405c42f0993dc25bec8e65db
58 N1f5e5e4bd5134dc9a5d4753af23b2549 rdf:first sg:person.010514113011.38
59 rdf:rest N16bf4ff7f2e64e3eba9d461c04286684
60 N2e419eebe797427bbd137e6991e24233 rdf:first Nde3b40c7ac004df49201f6411051917e
61 rdf:rest N1f5e5e4bd5134dc9a5d4753af23b2549
62 N3d0497cbeb5244dbbe681212b37cd615 schema:name readcube_id
63 schema:value 571527944d4ee46d40bda3f3259f58fbe28a886f1371436556f3ec340974c9e1
64 rdf:type schema:PropertyValue
65 N5d8453c1405c42f0993dc25bec8e65db rdf:first sg:person.012577306363.38
66 rdf:rest Ndc9a3a427cd1426a9898ab1d07cf99b2
67 N883c79cd6be44ac1999c21d06b545308 schema:name doi
68 schema:value 10.1007/s11665-017-2607-9
69 rdf:type schema:PropertyValue
70 N8fc5153647b84a93ae0b14affafdd215 schema:name dimensions_id
71 schema:value pub.1085983094
72 rdf:type schema:PropertyValue
73 Nbc133277777e4fef9b7dc8b24cfcf2a5 schema:issueNumber 7
74 rdf:type schema:PublicationIssue
75 Ndc9a3a427cd1426a9898ab1d07cf99b2 rdf:first sg:person.01042771377.61
76 rdf:rest rdf:nil
77 Nde3b40c7ac004df49201f6411051917e schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
78 schema:familyName Shao
79 schema:givenName Feixian
80 rdf:type schema:Person
81 Nf735c79897614640980997caf3a8e973 schema:volumeNumber 26
82 rdf:type schema:PublicationVolume
83 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
84 schema:name Engineering
85 rdf:type schema:DefinedTerm
86 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
87 schema:name Materials Engineering
88 rdf:type schema:DefinedTerm
89 sg:journal.1042007 schema:issn 1059-9495
90 1544-1024
91 schema:name Journal of Materials Engineering and Performance
92 rdf:type schema:Periodical
93 sg:person.01042771377.61 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
94 schema:familyName Ren
95 schema:givenName Luquan
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01042771377.61
97 rdf:type schema:Person
98 sg:person.010514113011.38 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
99 schema:familyName Liang
100 schema:givenName Yunhong
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010514113011.38
102 rdf:type schema:Person
103 sg:person.010552765413.11 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
104 schema:familyName Lin
105 schema:givenName Pengyu
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010552765413.11
107 rdf:type schema:Person
108 sg:person.012577306363.38 schema:affiliation https://www.grid.ac/institutes/grid.464312.6
109 schema:familyName Tong
110 schema:givenName Xin
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012577306363.38
112 rdf:type schema:Person
113 sg:person.013574730167.55 schema:affiliation https://www.grid.ac/institutes/grid.64924.3d
114 schema:familyName Zhang
115 schema:givenName Zhihui
116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013574730167.55
117 rdf:type schema:Person
118 sg:pub.10.1007/s11012-012-9614-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004743830
119 https://doi.org/10.1007/s11012-012-9614-6
120 rdf:type schema:CreativeWork
121 sg:pub.10.1007/s11431-009-0042-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034259707
122 https://doi.org/10.1007/s11431-009-0042-3
123 rdf:type schema:CreativeWork
124 sg:pub.10.1007/s11431-013-5449-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046985879
125 https://doi.org/10.1007/s11431-013-5449-1
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.apsusc.2007.05.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036128961
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.apsusc.2007.09.102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005921495
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.apsusc.2009.11.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008628720
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.apsusc.2013.02.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043522987
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.jascer.2013.10.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039505470
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.matdes.2012.05.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011421105
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.matdes.2013.05.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026219520
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.matdes.2013.11.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042119827
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.msea.2005.09.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043361387
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.msea.2012.10.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023598512
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.surfcoat.2006.05.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047118433
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.triboint.2006.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034699973
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.triboint.2011.08.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005957775
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.triboint.2012.02.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043994434
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/j.triboint.2012.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009614213
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1016/j.wear.2006.06.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038194162
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1016/j.wear.2012.11.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042335328
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1016/j.wear.2013.04.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006868502
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1016/s1369-7021(05)71077-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010082892
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1115/1.1828070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062075094
166 rdf:type schema:CreativeWork
167 https://doi.org/10.3390/met6090227 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022746331
168 rdf:type schema:CreativeWork
169 https://doi.org/10.4028/www.scientific.net/jera.19.103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072054853
170 rdf:type schema:CreativeWork
171 https://www.grid.ac/institutes/grid.464312.6 schema:alternateName Guangzhou Research Institute of Non-ferrous Metals
172 schema:name The National Engineering Laboratory for Modern Materials Surface Engineering Technology, Guangzhou Research Institute of Non-ferrous Metals, 510651, Guangzhou, People’s Republic of China
173 rdf:type schema:Organization
174 https://www.grid.ac/institutes/grid.64924.3d schema:alternateName Jilin University
175 schema:name State Key Laboratory of Automotive Simulation and Control, Jilin University, 130025, Changchun, People’s Republic of China
176 The Key Laboratory of Bionic Engineering (Ministry of Education, China), Jilin University, 5988 Renmin Street, 130025, Changchun, People’s Republic of China
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...