Study of the Peculiarities of the Zn-Mn Phase Diagram and Their Effect on the Superplastic Behavior of Fine-Grained Zn-Mn Alloys View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06-24

AUTHORS

Martin Lolov, Nikolai Djulgerov, Stoyko Gyurov

ABSTRACT

The part of binary manganese-zinc phase diagram (alloys containing up to 2% manganese) is analyzed and the expected compositions with increased plasticity are determined in this paper. A special attention is paid to the relation between the composition, microstructure, strain rate, and plasticity of the studied alloys. The mechanical behavior during plastic deformation is analyzed and the domains of strain rate are determined, where a superplastic deformation is expected. Superplastic deformation activation energy of the studied alloys is determined on the basis of the Arrhenius theory equation. It was found that the creep deformation of Zn-0.7% Mn alloy follows the power law, or is controlled by diffusion in grain boundaries, i.e., mechanism of deformation is Coble creep, while the deformation of Zn-1.2% Mn alloy is very low and does not correspond to any of diffusion processes in Zinc. More... »

PAGES

3838-3844

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-016-2184-3

DOI

http://dx.doi.org/10.1007/s11665-016-2184-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025143246


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Metal Science, Equipment and Technologies \u201cAcad. A. Balevsci\u201d with Haydroaerodinamics Centre Bulgarian Academy of Sciences, 67 \u201cShipchenski prohod\u201d Str., 1574, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.425025.4", 
          "name": [
            "Institute of Metal Science, Equipment and Technologies \u201cAcad. A. Balevsci\u201d with Haydroaerodinamics Centre Bulgarian Academy of Sciences, 67 \u201cShipchenski prohod\u201d Str., 1574, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lolov", 
        "givenName": "Martin", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metal Science, Equipment and Technologies \u201cAcad. A. Balevsci\u201d with Haydroaerodinamics Centre Bulgarian Academy of Sciences, 67 \u201cShipchenski prohod\u201d Str., 1574, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.425025.4", 
          "name": [
            "Institute of Metal Science, Equipment and Technologies \u201cAcad. A. Balevsci\u201d with Haydroaerodinamics Centre Bulgarian Academy of Sciences, 67 \u201cShipchenski prohod\u201d Str., 1574, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Djulgerov", 
        "givenName": "Nikolai", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metal Science, Equipment and Technologies \u201cAcad. A. Balevsci\u201d with Haydroaerodinamics Centre Bulgarian Academy of Sciences, 67 \u201cShipchenski prohod\u201d Str., 1574, Sofia, Bulgaria", 
          "id": "http://www.grid.ac/institutes/grid.425025.4", 
          "name": [
            "Institute of Metal Science, Equipment and Technologies \u201cAcad. A. Balevsci\u201d with Haydroaerodinamics Centre Bulgarian Academy of Sciences, 67 \u201cShipchenski prohod\u201d Str., 1574, Sofia, Bulgaria"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gyurov", 
        "givenName": "Stoyko", 
        "id": "sg:person.010646777033.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010646777033.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1361/10599490419162", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039233485", 
          "https://doi.org/10.1361/10599490419162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00980604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049060497", 
          "https://doi.org/10.1007/bf00980604"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-006-0782-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029219855", 
          "https://doi.org/10.1007/s10853-006-0782-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-84673-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031293642", 
          "https://doi.org/10.1007/978-3-642-84673-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10853-009-3780-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012499690", 
          "https://doi.org/10.1007/s10853-009-3780-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06-24", 
    "datePublishedReg": "2016-06-24", 
    "description": "The part of binary manganese-zinc phase diagram (alloys containing up to 2% manganese) is analyzed and the expected compositions with increased plasticity are determined in this paper. A special attention is paid to the relation between the composition, microstructure, strain rate, and plasticity of the studied alloys. The mechanical behavior during plastic deformation is analyzed and the domains of strain rate are determined, where a superplastic deformation is expected. Superplastic deformation activation energy of the studied alloys is determined on the basis of the Arrhenius theory equation. It was found that the creep deformation of Zn-0.7% Mn alloy follows the power law, or is controlled by diffusion in grain boundaries, i.e., mechanism of deformation is Coble creep, while the deformation of Zn-1.2% Mn alloy is very low and does not correspond to any of diffusion processes in Zinc.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11665-016-2184-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "keywords": [
      "Mn alloy", 
      "deformation activation energy", 
      "mechanisms of deformation", 
      "superplastic behavior", 
      "superplastic deformation", 
      "mechanical behavior", 
      "creep deformation", 
      "plastic deformation", 
      "Coble creep", 
      "strain rate", 
      "grain boundaries", 
      "alloy", 
      "deformation", 
      "phase diagram", 
      "diffusion process", 
      "activation energy", 
      "power law", 
      "microstructure", 
      "Zn-1.2", 
      "creep", 
      "theory equations", 
      "behavior", 
      "diffusion", 
      "diagram", 
      "energy", 
      "boundaries", 
      "special attention", 
      "composition", 
      "equations", 
      "process", 
      "rate", 
      "plasticity", 
      "law", 
      "Zn", 
      "effect", 
      "zinc", 
      "peculiarities", 
      "part", 
      "mechanism", 
      "attention", 
      "basis", 
      "domain", 
      "study", 
      "relation", 
      "paper", 
      "binary manganese-zinc phase diagram", 
      "manganese-zinc phase diagram", 
      "Superplastic deformation activation energy", 
      "Arrhenius theory equation", 
      "Zn-0.7", 
      "deformation of Zn-1.2", 
      "Zn-Mn Phase Diagram", 
      "Fine-Grained Zn"
    ], 
    "name": "Study of the Peculiarities of the Zn-Mn Phase Diagram and Their Effect on the Superplastic Behavior of Fine-Grained Zn-Mn Alloys", 
    "pagination": "3838-3844", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025143246"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-016-2184-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-016-2184-3", 
      "https://app.dimensions.ai/details/publication/pub.1025143246"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:37", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_700.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11665-016-2184-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2184-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2184-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2184-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2184-3'


 

This table displays all metadata directly associated to this object as RDF triples.

143 TRIPLES      22 PREDICATES      83 URIs      70 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-016-2184-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N611c9fcaf6d14e2a85d84e2d5d73c6c1
4 schema:citation sg:pub.10.1007/978-3-642-84673-1
5 sg:pub.10.1007/bf00980604
6 sg:pub.10.1007/s10853-006-0782-4
7 sg:pub.10.1007/s10853-009-3780-5
8 sg:pub.10.1361/10599490419162
9 schema:datePublished 2016-06-24
10 schema:datePublishedReg 2016-06-24
11 schema:description The part of binary manganese-zinc phase diagram (alloys containing up to 2% manganese) is analyzed and the expected compositions with increased plasticity are determined in this paper. A special attention is paid to the relation between the composition, microstructure, strain rate, and plasticity of the studied alloys. The mechanical behavior during plastic deformation is analyzed and the domains of strain rate are determined, where a superplastic deformation is expected. Superplastic deformation activation energy of the studied alloys is determined on the basis of the Arrhenius theory equation. It was found that the creep deformation of Zn-0.7% Mn alloy follows the power law, or is controlled by diffusion in grain boundaries, i.e., mechanism of deformation is Coble creep, while the deformation of Zn-1.2% Mn alloy is very low and does not correspond to any of diffusion processes in Zinc.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N16fbf51bfdab475c85ee9f8c1572e5c7
16 Nfbead2e2f8ef47d89f60796ce44bd77c
17 sg:journal.1042007
18 schema:keywords Arrhenius theory equation
19 Coble creep
20 Fine-Grained Zn
21 Mn alloy
22 Superplastic deformation activation energy
23 Zn
24 Zn-0.7
25 Zn-1.2
26 Zn-Mn Phase Diagram
27 activation energy
28 alloy
29 attention
30 basis
31 behavior
32 binary manganese-zinc phase diagram
33 boundaries
34 composition
35 creep
36 creep deformation
37 deformation
38 deformation activation energy
39 deformation of Zn-1.2
40 diagram
41 diffusion
42 diffusion process
43 domain
44 effect
45 energy
46 equations
47 grain boundaries
48 law
49 manganese-zinc phase diagram
50 mechanical behavior
51 mechanism
52 mechanisms of deformation
53 microstructure
54 paper
55 part
56 peculiarities
57 phase diagram
58 plastic deformation
59 plasticity
60 power law
61 process
62 rate
63 relation
64 special attention
65 strain rate
66 study
67 superplastic behavior
68 superplastic deformation
69 theory equations
70 zinc
71 schema:name Study of the Peculiarities of the Zn-Mn Phase Diagram and Their Effect on the Superplastic Behavior of Fine-Grained Zn-Mn Alloys
72 schema:pagination 3838-3844
73 schema:productId N05b851f6f2ff40d6a33c239c30320e07
74 N851b7deb07014d038b01747ec448ea48
75 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025143246
76 https://doi.org/10.1007/s11665-016-2184-3
77 schema:sdDatePublished 2021-12-01T19:37
78 schema:sdLicense https://scigraph.springernature.com/explorer/license/
79 schema:sdPublisher Nb9124b559f4b4551be279f943573fe8a
80 schema:url https://doi.org/10.1007/s11665-016-2184-3
81 sgo:license sg:explorer/license/
82 sgo:sdDataset articles
83 rdf:type schema:ScholarlyArticle
84 N05b851f6f2ff40d6a33c239c30320e07 schema:name dimensions_id
85 schema:value pub.1025143246
86 rdf:type schema:PropertyValue
87 N16fbf51bfdab475c85ee9f8c1572e5c7 schema:volumeNumber 25
88 rdf:type schema:PublicationVolume
89 N185b5dd2912c42808e191327ab766d67 rdf:first sg:person.010646777033.81
90 rdf:rest rdf:nil
91 N2276dbf8c3f4438281fc21c74ccb5296 schema:affiliation grid-institutes:grid.425025.4
92 schema:familyName Lolov
93 schema:givenName Martin
94 rdf:type schema:Person
95 N3d88f6ed57344ff4add88aad88cf749a rdf:first N8aca5d3f77fa4700ba01299ca2e5f7bb
96 rdf:rest N185b5dd2912c42808e191327ab766d67
97 N611c9fcaf6d14e2a85d84e2d5d73c6c1 rdf:first N2276dbf8c3f4438281fc21c74ccb5296
98 rdf:rest N3d88f6ed57344ff4add88aad88cf749a
99 N851b7deb07014d038b01747ec448ea48 schema:name doi
100 schema:value 10.1007/s11665-016-2184-3
101 rdf:type schema:PropertyValue
102 N8aca5d3f77fa4700ba01299ca2e5f7bb schema:affiliation grid-institutes:grid.425025.4
103 schema:familyName Djulgerov
104 schema:givenName Nikolai
105 rdf:type schema:Person
106 Nb9124b559f4b4551be279f943573fe8a schema:name Springer Nature - SN SciGraph project
107 rdf:type schema:Organization
108 Nfbead2e2f8ef47d89f60796ce44bd77c schema:issueNumber 9
109 rdf:type schema:PublicationIssue
110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
111 schema:name Engineering
112 rdf:type schema:DefinedTerm
113 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
114 schema:name Materials Engineering
115 rdf:type schema:DefinedTerm
116 sg:journal.1042007 schema:issn 1059-9495
117 1544-1024
118 schema:name Journal of Materials Engineering and Performance
119 schema:publisher Springer Nature
120 rdf:type schema:Periodical
121 sg:person.010646777033.81 schema:affiliation grid-institutes:grid.425025.4
122 schema:familyName Gyurov
123 schema:givenName Stoyko
124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010646777033.81
125 rdf:type schema:Person
126 sg:pub.10.1007/978-3-642-84673-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031293642
127 https://doi.org/10.1007/978-3-642-84673-1
128 rdf:type schema:CreativeWork
129 sg:pub.10.1007/bf00980604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049060497
130 https://doi.org/10.1007/bf00980604
131 rdf:type schema:CreativeWork
132 sg:pub.10.1007/s10853-006-0782-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029219855
133 https://doi.org/10.1007/s10853-006-0782-4
134 rdf:type schema:CreativeWork
135 sg:pub.10.1007/s10853-009-3780-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012499690
136 https://doi.org/10.1007/s10853-009-3780-5
137 rdf:type schema:CreativeWork
138 sg:pub.10.1361/10599490419162 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039233485
139 https://doi.org/10.1361/10599490419162
140 rdf:type schema:CreativeWork
141 grid-institutes:grid.425025.4 schema:alternateName Institute of Metal Science, Equipment and Technologies “Acad. A. Balevsci” with Haydroaerodinamics Centre Bulgarian Academy of Sciences, 67 “Shipchenski prohod” Str., 1574, Sofia, Bulgaria
142 schema:name Institute of Metal Science, Equipment and Technologies “Acad. A. Balevsci” with Haydroaerodinamics Centre Bulgarian Academy of Sciences, 67 “Shipchenski prohod” Str., 1574, Sofia, Bulgaria
143 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...