Microstructural Inhomogeneity in Constrained Groove Pressed Cu-Zn Alloy Sheet View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-07

AUTHORS

Prabhat Chand Yadav, Arush Sinhal, Sandeep Sahu, Abir Roy, Shashank Shekhar

ABSTRACT

Severe plastic deformation (SPD) is routinely employed to modify microstructure to obtain improved mechanical properties, particularly strength. Constrained groove pressing (CGP) is one of the SPD techniques that has gained prominence recently. However, the efficacy of the method in terms of homogeneity of microstructure and properties has not been well explored. In this work, we examine the microstructure and mechanical properties of CGP processed Cu-Zn alloy sheet and also explore homogeneity in their characteristics. We found that CGP is very effective in improving the mechanical properties of the alloy. Although the reduction in grain size with the number of passes in CGP is not as huge (~38 µm in annealed sample to ~10.2 µm in 1 pass sample) as is expected from a SPD technique, but there is a drastic improvement in ultimate tensile strength (~230 to ~380 MPa) which shows the effectiveness of this process. However, when mechanical properties were examined at smaller length scale using micro-indentation technique, it was found that hardness values of CGP processed samples were non-uniform along transverse direction with a distinct sinusoidal variation. Uniaxial tensile test data also showed strong anisotropy along principal directions. The cause of this anisotropy and non-uniformity in mechanical properties was found to lie in microstructural inhomogeneity which was found to exist at the length scale of the grooves of the die. More... »

PAGES

2604-2614

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-016-2142-0

DOI

http://dx.doi.org/10.1007/s11665-016-2142-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1019733612


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kanpur", 
          "id": "https://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, FB411, 208016, Kanpur, Uttar Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yadav", 
        "givenName": "Prabhat Chand", 
        "id": "sg:person.016642466320.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642466320.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kanpur", 
          "id": "https://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, FB411, 208016, Kanpur, Uttar Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sinhal", 
        "givenName": "Arush", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kanpur", 
          "id": "https://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, FB411, 208016, Kanpur, Uttar Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sahu", 
        "givenName": "Sandeep", 
        "id": "sg:person.011502016267.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011502016267.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Motilal Nehru National Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.419983.e", 
          "name": [
            "Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, 211004, Allahabad, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Roy", 
        "givenName": "Abir", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Kanpur", 
          "id": "https://www.grid.ac/institutes/grid.417965.8", 
          "name": [
            "Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, FB411, 208016, Kanpur, Uttar Pradesh, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shekhar", 
        "givenName": "Shashank", 
        "id": "sg:person.012327736520.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012327736520.26"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.4236/mnsms.2014.41006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000704215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2004.04.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003488301"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2010.04.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003533830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2012.04.121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004948810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2005.08.101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005348472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(00)01660-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005515370"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(01)01665-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005868066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2013.05.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005984182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pmatsci.2006.02.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006858182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(98)00988-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008010689"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijfatigue.2009.06.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009532181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2007.12.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010628397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-013-2165-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010659351", 
          "https://doi.org/10.1007/s11661-013-2165-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2011.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013658043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2008.01.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014972405"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pnsc.2014.10.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016450944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmapro.2011.07.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018732902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2008.06.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021456572"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.commatsci.2010.12.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022626259"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2011.06.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024927983"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2008.01.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026563988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2006.07.008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027681640"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2012.06.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030999456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.actamat.2009.07.049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031282012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2007.03.065", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032459707"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2009.01.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033660772"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(01)00064-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035419425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2004.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035709981"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12666-016-0834-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036804538", 
          "https://doi.org/10.1007/s12666-016-0834-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00090-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040382653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(03)00090-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040382653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2011.02.032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041233135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2006.02.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042726265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmapro.2013.08.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043253108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2007.01.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047345469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2005.11.081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047695297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2010.11.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047968749"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matdes.2009.07.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048197204"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pnsc.2014.01.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050347843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2010.03.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050756816"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2014.08.018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050820665"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2005.03.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051312130"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2007.01.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051897239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(02)00722-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052063922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(02)00722-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052063922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.3643931", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062135906"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1115/1.4031021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062156299"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07", 
    "datePublishedReg": "2016-07-01", 
    "description": "Severe plastic deformation (SPD) is routinely employed to modify microstructure to obtain improved mechanical properties, particularly strength. Constrained groove pressing (CGP) is one of the SPD techniques that has gained prominence recently. However, the efficacy of the method in terms of homogeneity of microstructure and properties has not been well explored. In this work, we examine the microstructure and mechanical properties of CGP processed Cu-Zn alloy sheet and also explore homogeneity in their characteristics. We found that CGP is very effective in improving the mechanical properties of the alloy. Although the reduction in grain size with the number of passes in CGP is not as huge (~38 \u00b5m in annealed sample to ~10.2 \u00b5m in 1 pass sample) as is expected from a SPD technique, but there is a drastic improvement in ultimate tensile strength (~230 to ~380 MPa) which shows the effectiveness of this process. However, when mechanical properties were examined at smaller length scale using micro-indentation technique, it was found that hardness values of CGP processed samples were non-uniform along transverse direction with a distinct sinusoidal variation. Uniaxial tensile test data also showed strong anisotropy along principal directions. The cause of this anisotropy and non-uniformity in mechanical properties was found to lie in microstructural inhomogeneity which was found to exist at the length scale of the grooves of the die.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11665-016-2142-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Microstructural Inhomogeneity in Constrained Groove Pressed Cu-Zn Alloy Sheet", 
    "pagination": "2604-2614", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5e060f22a4256edb1e1c97dc46c0ea2db7539a72b19a386a9b022552904567b7"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-016-2142-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1019733612"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-016-2142-0", 
      "https://app.dimensions.ai/details/publication/pub.1019733612"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:18", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11665-016-2142-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2142-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2142-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2142-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2142-0'


 

This table displays all metadata directly associated to this object as RDF triples.

227 TRIPLES      21 PREDICATES      72 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-016-2142-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N83b2846a4b0047cebc4ff3f9d1e4fd14
4 schema:citation sg:pub.10.1007/s11661-013-2165-1
5 sg:pub.10.1007/s12666-016-0834-7
6 https://doi.org/10.1016/j.actamat.2006.07.008
7 https://doi.org/10.1016/j.actamat.2009.07.049
8 https://doi.org/10.1016/j.commatsci.2010.12.010
9 https://doi.org/10.1016/j.ijfatigue.2009.06.017
10 https://doi.org/10.1016/j.jmapro.2011.07.001
11 https://doi.org/10.1016/j.jmapro.2013.08.001
12 https://doi.org/10.1016/j.jmatprotec.2004.02.010
13 https://doi.org/10.1016/j.jmatprotec.2008.01.031
14 https://doi.org/10.1016/j.jmatprotec.2010.04.009
15 https://doi.org/10.1016/j.jmatprotec.2010.11.013
16 https://doi.org/10.1016/j.jmatprotec.2014.08.018
17 https://doi.org/10.1016/j.matdes.2009.01.012
18 https://doi.org/10.1016/j.matdes.2009.07.035
19 https://doi.org/10.1016/j.matdes.2011.02.032
20 https://doi.org/10.1016/j.matdes.2011.08.003
21 https://doi.org/10.1016/j.matdes.2013.05.029
22 https://doi.org/10.1016/j.msea.2004.04.067
23 https://doi.org/10.1016/j.msea.2005.08.101
24 https://doi.org/10.1016/j.msea.2005.11.081
25 https://doi.org/10.1016/j.msea.2007.01.042
26 https://doi.org/10.1016/j.msea.2007.03.065
27 https://doi.org/10.1016/j.msea.2007.12.055
28 https://doi.org/10.1016/j.msea.2008.06.039
29 https://doi.org/10.1016/j.msea.2010.03.005
30 https://doi.org/10.1016/j.msea.2011.06.056
31 https://doi.org/10.1016/j.msea.2012.04.121
32 https://doi.org/10.1016/j.msea.2012.06.022
33 https://doi.org/10.1016/j.pmatsci.2006.02.003
34 https://doi.org/10.1016/j.pnsc.2014.01.013
35 https://doi.org/10.1016/j.pnsc.2014.10.009
36 https://doi.org/10.1016/j.scriptamat.2005.03.001
37 https://doi.org/10.1016/j.scriptamat.2006.02.026
38 https://doi.org/10.1016/j.scriptamat.2007.01.043
39 https://doi.org/10.1016/j.scriptamat.2008.01.043
40 https://doi.org/10.1016/s0921-5093(00)01660-9
41 https://doi.org/10.1016/s0921-5093(01)01665-3
42 https://doi.org/10.1016/s0921-5093(98)00988-5
43 https://doi.org/10.1016/s0924-0136(02)00722-7
44 https://doi.org/10.1016/s1359-6454(01)00064-7
45 https://doi.org/10.1016/s1359-6454(03)00090-9
46 https://doi.org/10.1115/1.3643931
47 https://doi.org/10.1115/1.4031021
48 https://doi.org/10.4236/mnsms.2014.41006
49 schema:datePublished 2016-07
50 schema:datePublishedReg 2016-07-01
51 schema:description Severe plastic deformation (SPD) is routinely employed to modify microstructure to obtain improved mechanical properties, particularly strength. Constrained groove pressing (CGP) is one of the SPD techniques that has gained prominence recently. However, the efficacy of the method in terms of homogeneity of microstructure and properties has not been well explored. In this work, we examine the microstructure and mechanical properties of CGP processed Cu-Zn alloy sheet and also explore homogeneity in their characteristics. We found that CGP is very effective in improving the mechanical properties of the alloy. Although the reduction in grain size with the number of passes in CGP is not as huge (~38 µm in annealed sample to ~10.2 µm in 1 pass sample) as is expected from a SPD technique, but there is a drastic improvement in ultimate tensile strength (~230 to ~380 MPa) which shows the effectiveness of this process. However, when mechanical properties were examined at smaller length scale using micro-indentation technique, it was found that hardness values of CGP processed samples were non-uniform along transverse direction with a distinct sinusoidal variation. Uniaxial tensile test data also showed strong anisotropy along principal directions. The cause of this anisotropy and non-uniformity in mechanical properties was found to lie in microstructural inhomogeneity which was found to exist at the length scale of the grooves of the die.
52 schema:genre research_article
53 schema:inLanguage en
54 schema:isAccessibleForFree false
55 schema:isPartOf N310f47d5895d423c8fe0e480815e30ac
56 Nb71b3e9a1d1e4efbb12706e717f36a0b
57 sg:journal.1042007
58 schema:name Microstructural Inhomogeneity in Constrained Groove Pressed Cu-Zn Alloy Sheet
59 schema:pagination 2604-2614
60 schema:productId N4002f73a44b94cf4bd5b1baae67821c5
61 N79d11942c8f146eda80f66b2eb3150b6
62 Nc9539de5335c4841833b3ffeb0f0a733
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019733612
64 https://doi.org/10.1007/s11665-016-2142-0
65 schema:sdDatePublished 2019-04-11T00:18
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher N126cbb829424415084347bfc4ab6f1cd
68 schema:url http://link.springer.com/10.1007%2Fs11665-016-2142-0
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N126cbb829424415084347bfc4ab6f1cd schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N310f47d5895d423c8fe0e480815e30ac schema:issueNumber 7
75 rdf:type schema:PublicationIssue
76 N4002f73a44b94cf4bd5b1baae67821c5 schema:name doi
77 schema:value 10.1007/s11665-016-2142-0
78 rdf:type schema:PropertyValue
79 N79d11942c8f146eda80f66b2eb3150b6 schema:name dimensions_id
80 schema:value pub.1019733612
81 rdf:type schema:PropertyValue
82 N83b2846a4b0047cebc4ff3f9d1e4fd14 rdf:first sg:person.016642466320.88
83 rdf:rest Nc5db45bf8bd64e5791f312fc5b72f3e0
84 N9a76565ae5b944cf89f9047706f07d00 rdf:first sg:person.012327736520.26
85 rdf:rest rdf:nil
86 Nac62b92cd2d64d34b6251c79a1a572a0 rdf:first sg:person.011502016267.82
87 rdf:rest Nc142a010ccc0403a9912e31a293d1e4c
88 Nb71b3e9a1d1e4efbb12706e717f36a0b schema:volumeNumber 25
89 rdf:type schema:PublicationVolume
90 Nc142a010ccc0403a9912e31a293d1e4c rdf:first Nd1ae2256088140b3afb6eacf9c799ab1
91 rdf:rest N9a76565ae5b944cf89f9047706f07d00
92 Nc5db45bf8bd64e5791f312fc5b72f3e0 rdf:first Nd119bf55c4df49ea9de784fa7e55f01c
93 rdf:rest Nac62b92cd2d64d34b6251c79a1a572a0
94 Nc9539de5335c4841833b3ffeb0f0a733 schema:name readcube_id
95 schema:value 5e060f22a4256edb1e1c97dc46c0ea2db7539a72b19a386a9b022552904567b7
96 rdf:type schema:PropertyValue
97 Nd119bf55c4df49ea9de784fa7e55f01c schema:affiliation https://www.grid.ac/institutes/grid.417965.8
98 schema:familyName Sinhal
99 schema:givenName Arush
100 rdf:type schema:Person
101 Nd1ae2256088140b3afb6eacf9c799ab1 schema:affiliation https://www.grid.ac/institutes/grid.419983.e
102 schema:familyName Roy
103 schema:givenName Abir
104 rdf:type schema:Person
105 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
106 schema:name Engineering
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
109 schema:name Materials Engineering
110 rdf:type schema:DefinedTerm
111 sg:journal.1042007 schema:issn 1059-9495
112 1544-1024
113 schema:name Journal of Materials Engineering and Performance
114 rdf:type schema:Periodical
115 sg:person.011502016267.82 schema:affiliation https://www.grid.ac/institutes/grid.417965.8
116 schema:familyName Sahu
117 schema:givenName Sandeep
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011502016267.82
119 rdf:type schema:Person
120 sg:person.012327736520.26 schema:affiliation https://www.grid.ac/institutes/grid.417965.8
121 schema:familyName Shekhar
122 schema:givenName Shashank
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012327736520.26
124 rdf:type schema:Person
125 sg:person.016642466320.88 schema:affiliation https://www.grid.ac/institutes/grid.417965.8
126 schema:familyName Yadav
127 schema:givenName Prabhat Chand
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016642466320.88
129 rdf:type schema:Person
130 sg:pub.10.1007/s11661-013-2165-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010659351
131 https://doi.org/10.1007/s11661-013-2165-1
132 rdf:type schema:CreativeWork
133 sg:pub.10.1007/s12666-016-0834-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036804538
134 https://doi.org/10.1007/s12666-016-0834-7
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1016/j.actamat.2006.07.008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027681640
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1016/j.actamat.2009.07.049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031282012
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1016/j.commatsci.2010.12.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022626259
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/j.ijfatigue.2009.06.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009532181
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/j.jmapro.2011.07.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018732902
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.jmapro.2013.08.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043253108
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.jmatprotec.2004.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035709981
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1016/j.jmatprotec.2008.01.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026563988
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1016/j.jmatprotec.2010.04.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003533830
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1016/j.jmatprotec.2010.11.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047968749
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1016/j.jmatprotec.2014.08.018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050820665
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1016/j.matdes.2009.01.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033660772
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1016/j.matdes.2009.07.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048197204
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/j.matdes.2011.02.032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041233135
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/j.matdes.2011.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013658043
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1016/j.matdes.2013.05.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005984182
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1016/j.msea.2004.04.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003488301
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1016/j.msea.2005.08.101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005348472
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1016/j.msea.2005.11.081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047695297
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1016/j.msea.2007.01.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047345469
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1016/j.msea.2007.03.065 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032459707
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1016/j.msea.2007.12.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010628397
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1016/j.msea.2008.06.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021456572
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1016/j.msea.2010.03.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050756816
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1016/j.msea.2011.06.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024927983
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1016/j.msea.2012.04.121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004948810
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1016/j.msea.2012.06.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030999456
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1016/j.pmatsci.2006.02.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006858182
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1016/j.pnsc.2014.01.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050347843
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1016/j.pnsc.2014.10.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016450944
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1016/j.scriptamat.2005.03.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051312130
197 rdf:type schema:CreativeWork
198 https://doi.org/10.1016/j.scriptamat.2006.02.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042726265
199 rdf:type schema:CreativeWork
200 https://doi.org/10.1016/j.scriptamat.2007.01.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051897239
201 rdf:type schema:CreativeWork
202 https://doi.org/10.1016/j.scriptamat.2008.01.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014972405
203 rdf:type schema:CreativeWork
204 https://doi.org/10.1016/s0921-5093(00)01660-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005515370
205 rdf:type schema:CreativeWork
206 https://doi.org/10.1016/s0921-5093(01)01665-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005868066
207 rdf:type schema:CreativeWork
208 https://doi.org/10.1016/s0921-5093(98)00988-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008010689
209 rdf:type schema:CreativeWork
210 https://doi.org/10.1016/s0924-0136(02)00722-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052063922
211 rdf:type schema:CreativeWork
212 https://doi.org/10.1016/s1359-6454(01)00064-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035419425
213 rdf:type schema:CreativeWork
214 https://doi.org/10.1016/s1359-6454(03)00090-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040382653
215 rdf:type schema:CreativeWork
216 https://doi.org/10.1115/1.3643931 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062135906
217 rdf:type schema:CreativeWork
218 https://doi.org/10.1115/1.4031021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062156299
219 rdf:type schema:CreativeWork
220 https://doi.org/10.4236/mnsms.2014.41006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000704215
221 rdf:type schema:CreativeWork
222 https://www.grid.ac/institutes/grid.417965.8 schema:alternateName Indian Institute of Technology Kanpur
223 schema:name Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, FB411, 208016, Kanpur, Uttar Pradesh, India
224 rdf:type schema:Organization
225 https://www.grid.ac/institutes/grid.419983.e schema:alternateName Motilal Nehru National Institute of Technology
226 schema:name Department of Applied Mechanics, Motilal Nehru National Institute of Technology Allahabad, 211004, Allahabad, India
227 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...