Prediction of Forming Limit Curves from Hardness for Steels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-08

AUTHORS

Erik J. Pavlina, Chester J. Van Tyne

ABSTRACT

This paper presents a method for predicting the strain-based forming limit curve (FLC) for steels using hardness. The stretching side (positive minor strain component) of the FLC was calculated by using a Marciniak-Kuczyński model with a non-quadratic yield function, while the drawing side (negative minor strain component) of the FLC was predicted based on the relationship between the major and minor critical strains, in accordance with the theory of maximum sheet tension for local necking. The requisite parameter that describes the plastic flow behavior (in this case, the strain hardening exponent) was calculated, based on correlations with the measured microhardness. Additionally, the strain rate sensitivity was considered in the model by using a newly developed empirical correlation between hardness and strain rate sensitivity. This hardness-based model was used to predict FLCs that demonstrate good agreement with experimental FLCs of a high-strength low-alloy steel and a dual-phase steel. Equations are provided that enable the calculation of the FLC from given hardness values for different severities of the material inhomogeneity. More... »

PAGES

3465-3471

References to SciGraph publications

  • 2008-12. Correlation of Yield Strength and Tensile Strength with Hardness for Steels in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 1990-01. Calculations of forming limit diagrams in METALLURGICAL TRANSACTIONS A
  • 1972-11. An improved equation relating hardness to ultimate strength in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1988-08. Effect of geometrical defects in forming sheet steel by biaxial stretching in METALLURGICAL TRANSACTIONS A
  • 2014-03. Material sensitivity and formability prediction of warm-forming magnesium alloy sheets with experimental verification in THE INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
  • 2014-06. Uniform Elongation and the Stress-Strain Flow Curve of Steels Calculated from Hardness Using Empirical Correlations in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 1971-07. The determination of yield strength from hardness measurements in METALLURGICAL TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11665-016-2115-3

    DOI

    http://dx.doi.org/10.1007/s11665-016-2115-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011334190


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "name": [
                "AK Steel Research and Innovation Center, 705 Curtis Street, 45044, Middletown, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pavlina", 
            "givenName": "Erik J.", 
            "id": "sg:person.011277652255.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011277652255.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Colorado School of Mines", 
              "id": "https://www.grid.ac/institutes/grid.254549.b", 
              "name": [
                "Advanced Steel Processing and Products Research Center, Colorado School of Mines, 1500 Illinois Street, 80401, Golden, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Tyne", 
            "givenName": "Chester J.", 
            "id": "sg:person.07741770136.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741770136.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/0020-7403(80)90011-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005030523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-7403(80)90011-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005030523"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02652880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007080663", 
              "https://doi.org/10.1007/bf02652880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008476952", 
              "https://doi.org/10.1007/bf02645209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02645209", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008476952", 
              "https://doi.org/10.1007/bf02645209"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00170-013-5435-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1011923861", 
              "https://doi.org/10.1007/s00170-013-5435-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5416(87)90283-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021464168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0025-5416(87)90283-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021464168"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijsolstr.2005.03.062", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026250500"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0007-8506(07)61312-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029525014"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.matdes.2011.07.057", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033461552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0169-2607(00)00124-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035197936"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02656427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036114418", 
              "https://doi.org/10.1007/bf02656427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02656427", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036114418", 
              "https://doi.org/10.1007/bf02656427"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-008-9225-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1042407163", 
              "https://doi.org/10.1007/s11665-008-9225-5"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0924-0136(98)00066-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1044727796"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-014-1037-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047297367", 
              "https://doi.org/10.1007/s11665-014-1037-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-7403(67)90066-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050525306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0020-7403(67)90066-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1050525306"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.ijsolstr.2010.10.023", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051393708"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02913433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085133956", 
              "https://doi.org/10.1007/bf02913433"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-08", 
        "datePublishedReg": "2016-08-01", 
        "description": "This paper presents a method for predicting the strain-based forming limit curve (FLC) for steels using hardness. The stretching side (positive minor strain component) of the FLC was calculated by using a Marciniak-Kuczy\u0144ski model with a non-quadratic yield function, while the drawing side (negative minor strain component) of the FLC was predicted based on the relationship between the major and minor critical strains, in accordance with the theory of maximum sheet tension for local necking. The requisite parameter that describes the plastic flow behavior (in this case, the strain hardening exponent) was calculated, based on correlations with the measured microhardness. Additionally, the strain rate sensitivity was considered in the model by using a newly developed empirical correlation between hardness and strain rate sensitivity. This hardness-based model was used to predict FLCs that demonstrate good agreement with experimental FLCs of a high-strength low-alloy steel and a dual-phase steel. Equations are provided that enable the calculation of the FLC from given hardness values for different severities of the material inhomogeneity.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11665-016-2115-3", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042007", 
            "issn": [
              "1059-9495", 
              "1544-1024"
            ], 
            "name": "Journal of Materials Engineering and Performance", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "8", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "25"
          }
        ], 
        "name": "Prediction of Forming Limit Curves from Hardness for Steels", 
        "pagination": "3465-3471", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "35ffdbbd4c4751d23938591db0af5e60cc40ce82f521540230bd776719295fec"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11665-016-2115-3"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011334190"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11665-016-2115-3", 
          "https://app.dimensions.ai/details/publication/pub.1011334190"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T12:25", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87106_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1007%2Fs11665-016-2115-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2115-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2115-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2115-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2115-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    125 TRIPLES      21 PREDICATES      43 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11665-016-2115-3 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Nfaf75b42324f49148863075c4c61868f
    4 schema:citation sg:pub.10.1007/bf02645209
    5 sg:pub.10.1007/bf02652880
    6 sg:pub.10.1007/bf02656427
    7 sg:pub.10.1007/bf02913433
    8 sg:pub.10.1007/s00170-013-5435-6
    9 sg:pub.10.1007/s11665-008-9225-5
    10 sg:pub.10.1007/s11665-014-1037-1
    11 https://doi.org/10.1016/0020-7403(67)90066-5
    12 https://doi.org/10.1016/0020-7403(80)90011-9
    13 https://doi.org/10.1016/0025-5416(87)90283-7
    14 https://doi.org/10.1016/j.ijsolstr.2005.03.062
    15 https://doi.org/10.1016/j.ijsolstr.2010.10.023
    16 https://doi.org/10.1016/j.matdes.2011.07.057
    17 https://doi.org/10.1016/s0007-8506(07)61312-2
    18 https://doi.org/10.1016/s0169-2607(00)00124-3
    19 https://doi.org/10.1016/s0924-0136(98)00066-1
    20 schema:datePublished 2016-08
    21 schema:datePublishedReg 2016-08-01
    22 schema:description This paper presents a method for predicting the strain-based forming limit curve (FLC) for steels using hardness. The stretching side (positive minor strain component) of the FLC was calculated by using a Marciniak-Kuczyński model with a non-quadratic yield function, while the drawing side (negative minor strain component) of the FLC was predicted based on the relationship between the major and minor critical strains, in accordance with the theory of maximum sheet tension for local necking. The requisite parameter that describes the plastic flow behavior (in this case, the strain hardening exponent) was calculated, based on correlations with the measured microhardness. Additionally, the strain rate sensitivity was considered in the model by using a newly developed empirical correlation between hardness and strain rate sensitivity. This hardness-based model was used to predict FLCs that demonstrate good agreement with experimental FLCs of a high-strength low-alloy steel and a dual-phase steel. Equations are provided that enable the calculation of the FLC from given hardness values for different severities of the material inhomogeneity.
    23 schema:genre research_article
    24 schema:inLanguage en
    25 schema:isAccessibleForFree false
    26 schema:isPartOf Nc3dee12cc2b34b008a3af58d909f9ec1
    27 Ne7a9ce6128d94425bae0707a1990d8c6
    28 sg:journal.1042007
    29 schema:name Prediction of Forming Limit Curves from Hardness for Steels
    30 schema:pagination 3465-3471
    31 schema:productId N0e2c3837a0ee400b81b7949cf3e70264
    32 N41d29764f94c4e5d85fe654796a23846
    33 N5ff6b3faba4a48f18c67d6373b99305b
    34 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011334190
    35 https://doi.org/10.1007/s11665-016-2115-3
    36 schema:sdDatePublished 2019-04-11T12:25
    37 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    38 schema:sdPublisher Nc6f1c2fffc204221aff8accf707cdd03
    39 schema:url https://link.springer.com/10.1007%2Fs11665-016-2115-3
    40 sgo:license sg:explorer/license/
    41 sgo:sdDataset articles
    42 rdf:type schema:ScholarlyArticle
    43 N0e2c3837a0ee400b81b7949cf3e70264 schema:name readcube_id
    44 schema:value 35ffdbbd4c4751d23938591db0af5e60cc40ce82f521540230bd776719295fec
    45 rdf:type schema:PropertyValue
    46 N41d29764f94c4e5d85fe654796a23846 schema:name doi
    47 schema:value 10.1007/s11665-016-2115-3
    48 rdf:type schema:PropertyValue
    49 N5ff6b3faba4a48f18c67d6373b99305b schema:name dimensions_id
    50 schema:value pub.1011334190
    51 rdf:type schema:PropertyValue
    52 N7db1c435bc5f448eb8a71b6a4f49c910 schema:name AK Steel Research and Innovation Center, 705 Curtis Street, 45044, Middletown, OH, USA
    53 rdf:type schema:Organization
    54 N821f74e0f4944aa992575fb5b84321cf rdf:first sg:person.07741770136.12
    55 rdf:rest rdf:nil
    56 Nc3dee12cc2b34b008a3af58d909f9ec1 schema:volumeNumber 25
    57 rdf:type schema:PublicationVolume
    58 Nc6f1c2fffc204221aff8accf707cdd03 schema:name Springer Nature - SN SciGraph project
    59 rdf:type schema:Organization
    60 Ne7a9ce6128d94425bae0707a1990d8c6 schema:issueNumber 8
    61 rdf:type schema:PublicationIssue
    62 Nfaf75b42324f49148863075c4c61868f rdf:first sg:person.011277652255.50
    63 rdf:rest N821f74e0f4944aa992575fb5b84321cf
    64 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    65 schema:name Engineering
    66 rdf:type schema:DefinedTerm
    67 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    68 schema:name Materials Engineering
    69 rdf:type schema:DefinedTerm
    70 sg:journal.1042007 schema:issn 1059-9495
    71 1544-1024
    72 schema:name Journal of Materials Engineering and Performance
    73 rdf:type schema:Periodical
    74 sg:person.011277652255.50 schema:affiliation N7db1c435bc5f448eb8a71b6a4f49c910
    75 schema:familyName Pavlina
    76 schema:givenName Erik J.
    77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011277652255.50
    78 rdf:type schema:Person
    79 sg:person.07741770136.12 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
    80 schema:familyName Van Tyne
    81 schema:givenName Chester J.
    82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741770136.12
    83 rdf:type schema:Person
    84 sg:pub.10.1007/bf02645209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008476952
    85 https://doi.org/10.1007/bf02645209
    86 rdf:type schema:CreativeWork
    87 sg:pub.10.1007/bf02652880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007080663
    88 https://doi.org/10.1007/bf02652880
    89 rdf:type schema:CreativeWork
    90 sg:pub.10.1007/bf02656427 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036114418
    91 https://doi.org/10.1007/bf02656427
    92 rdf:type schema:CreativeWork
    93 sg:pub.10.1007/bf02913433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085133956
    94 https://doi.org/10.1007/bf02913433
    95 rdf:type schema:CreativeWork
    96 sg:pub.10.1007/s00170-013-5435-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011923861
    97 https://doi.org/10.1007/s00170-013-5435-6
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1007/s11665-008-9225-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042407163
    100 https://doi.org/10.1007/s11665-008-9225-5
    101 rdf:type schema:CreativeWork
    102 sg:pub.10.1007/s11665-014-1037-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047297367
    103 https://doi.org/10.1007/s11665-014-1037-1
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1016/0020-7403(67)90066-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050525306
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/0020-7403(80)90011-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005030523
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1016/0025-5416(87)90283-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021464168
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1016/j.ijsolstr.2005.03.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026250500
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1016/j.ijsolstr.2010.10.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051393708
    114 rdf:type schema:CreativeWork
    115 https://doi.org/10.1016/j.matdes.2011.07.057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033461552
    116 rdf:type schema:CreativeWork
    117 https://doi.org/10.1016/s0007-8506(07)61312-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029525014
    118 rdf:type schema:CreativeWork
    119 https://doi.org/10.1016/s0169-2607(00)00124-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035197936
    120 rdf:type schema:CreativeWork
    121 https://doi.org/10.1016/s0924-0136(98)00066-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044727796
    122 rdf:type schema:CreativeWork
    123 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
    124 schema:name Advanced Steel Processing and Products Research Center, Colorado School of Mines, 1500 Illinois Street, 80401, Golden, CO, USA
    125 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...