Production Process of Biocompatible Magnesium Alloy Tubes Using Extrusion and Dieless Drawing Processes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06

AUTHORS

Piotr Kustra, Andrij Milenin, Bartłomiej Płonka, Tsuyoshi Furushima

ABSTRACT

Development of technological production process of biocompatible magnesium tubes for medical applications is the subject of the present paper. The technology consists of two stages—extrusion and dieless drawing process, respectively. Mg alloys for medical applications such as MgCa0.8 are characterized by low technological plasticity during deformation that is why optimization of production parameters is necessary to obtain good quality product. Thus, authors developed yield stress and ductility model for the investigated Mg alloy and then used the numerical simulations to evaluate proper manufacturing conditions. Grid Extrusion3d software developed by authors was used to determine optimum process parameters for extrusion—billet temperature 400 °C and extrusion velocity 1 mm/s. Based on those parameters the tube with external diameter 5 mm without defects was manufactured. Then, commercial Abaqus software was used for modeling dieless drawing. It was shown that the reduction in the area of 60% can be realized for MgCa0.8 magnesium alloy. Tubes with the final diameter of 3 mm were selected as a case study, to present capabilities of proposed processes. More... »

PAGES

2528-2535

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-016-2090-8

DOI

http://dx.doi.org/10.1007/s11665-016-2090-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009188227


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "AGH University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.9922.0", 
          "name": [
            "AGH University of Science and Technology, Mickiewicza 30 Av., 30-059, Krakow, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kustra", 
        "givenName": "Piotr", 
        "id": "sg:person.010436724773.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010436724773.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AGH University of Science and Technology", 
          "id": "https://www.grid.ac/institutes/grid.9922.0", 
          "name": [
            "AGH University of Science and Technology, Mickiewicza 30 Av., 30-059, Krakow, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Milenin", 
        "givenName": "Andrij", 
        "id": "sg:person.0704043563.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704043563.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Non-Ferrous Metals", 
          "id": "https://www.grid.ac/institutes/grid.425049.e", 
          "name": [
            "Institute of Non-Ferrous Metals, Light Metals Division in Skawina, Pi\u0142sudskiego 19 Av., 32-050, Skawina, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "P\u0142onka", 
        "givenName": "Bart\u0142omiej", 
        "id": "sg:person.011311335457.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011311335457.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tokyo Metropolitan University", 
          "id": "https://www.grid.ac/institutes/grid.265074.2", 
          "name": [
            "Tokyo Metropolitan University, 1-1 Minami-osawa, 192-0397, Hachioji, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Furushima", 
        "givenName": "Tsuyoshi", 
        "id": "sg:person.013275475434.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013275475434.78"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2004.09.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000922620"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2013.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002783989"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compstruc.2011.01.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007297447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1521-4052(200102)32:2<116::aid-mawe116>3.0.co;2-j", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015307162"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mawe.200800412", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015740679"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.acme.2012.04.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018634306"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0924-0136(92)90085-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020966274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0924-0136(92)90085-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020966274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0890-6955(01)00149-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031974110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/v10172-012-0150-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038531589"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2478/amm-2014-0091", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040495944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmatprotec.2006.11.204", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046395322"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0924-0136(98)00205-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054663740"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06", 
    "datePublishedReg": "2016-06-01", 
    "description": "Development of technological production process of biocompatible magnesium tubes for medical applications is the subject of the present paper. The technology consists of two stages\u2014extrusion and dieless drawing process, respectively. Mg alloys for medical applications such as MgCa0.8 are characterized by low technological plasticity during deformation that is why optimization of production parameters is necessary to obtain good quality product. Thus, authors developed yield stress and ductility model for the investigated Mg alloy and then used the numerical simulations to evaluate proper manufacturing conditions. Grid Extrusion3d software developed by authors was used to determine optimum process parameters for extrusion\u2014billet temperature 400 \u00b0C and extrusion velocity 1 mm/s. Based on those parameters the tube with external diameter 5 mm without defects was manufactured. Then, commercial Abaqus software was used for modeling dieless drawing. It was shown that the reduction in the area of 60% can be realized for MgCa0.8 magnesium alloy. Tubes with the final diameter of 3 mm were selected as a case study, to present capabilities of proposed processes.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11665-016-2090-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "name": "Production Process of Biocompatible Magnesium Alloy Tubes Using Extrusion and Dieless Drawing Processes", 
    "pagination": "2528-2535", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2bc56650c389e18bfe1c9539128d8ce3a34aa6485627675efa0573c246dc65fc"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-016-2090-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009188227"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-016-2090-8", 
      "https://app.dimensions.ai/details/publication/pub.1009188227"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11665-016-2090-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2090-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2090-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2090-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-016-2090-8'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-016-2090-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Ne231ca6f4de24495a3786aa82009ef05
4 schema:citation https://doi.org/10.1002/1521-4052(200102)32:2<116::aid-mawe116>3.0.co;2-j
5 https://doi.org/10.1002/mawe.200800412
6 https://doi.org/10.1016/0924-0136(92)90085-7
7 https://doi.org/10.1016/j.acme.2012.04.003
8 https://doi.org/10.1016/j.compstruc.2011.01.003
9 https://doi.org/10.1016/j.jmatprotec.2004.09.031
10 https://doi.org/10.1016/j.jmatprotec.2006.11.204
11 https://doi.org/10.1016/j.jmatprotec.2013.07.005
12 https://doi.org/10.1016/s0890-6955(01)00149-3
13 https://doi.org/10.1016/s0924-0136(98)00205-2
14 https://doi.org/10.2478/amm-2014-0091
15 https://doi.org/10.2478/v10172-012-0150-0
16 schema:datePublished 2016-06
17 schema:datePublishedReg 2016-06-01
18 schema:description Development of technological production process of biocompatible magnesium tubes for medical applications is the subject of the present paper. The technology consists of two stages—extrusion and dieless drawing process, respectively. Mg alloys for medical applications such as MgCa0.8 are characterized by low technological plasticity during deformation that is why optimization of production parameters is necessary to obtain good quality product. Thus, authors developed yield stress and ductility model for the investigated Mg alloy and then used the numerical simulations to evaluate proper manufacturing conditions. Grid Extrusion3d software developed by authors was used to determine optimum process parameters for extrusion—billet temperature 400 °C and extrusion velocity 1 mm/s. Based on those parameters the tube with external diameter 5 mm without defects was manufactured. Then, commercial Abaqus software was used for modeling dieless drawing. It was shown that the reduction in the area of 60% can be realized for MgCa0.8 magnesium alloy. Tubes with the final diameter of 3 mm were selected as a case study, to present capabilities of proposed processes.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N49460296fff6404e995fcc233f439734
23 N6129d948acb64bb5901e4c6f92fcd78e
24 sg:journal.1042007
25 schema:name Production Process of Biocompatible Magnesium Alloy Tubes Using Extrusion and Dieless Drawing Processes
26 schema:pagination 2528-2535
27 schema:productId N09b5145af097493eb110a2390e4d1263
28 N398cb5e3a2684bdeabe6b8f8bfff9326
29 Na5102b0356104665aaf0f7085cc652ac
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009188227
31 https://doi.org/10.1007/s11665-016-2090-8
32 schema:sdDatePublished 2019-04-10T21:38
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N50de7156be1840b69cb5428b1974f0df
35 schema:url http://link.springer.com/10.1007%2Fs11665-016-2090-8
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N09b5145af097493eb110a2390e4d1263 schema:name doi
40 schema:value 10.1007/s11665-016-2090-8
41 rdf:type schema:PropertyValue
42 N398cb5e3a2684bdeabe6b8f8bfff9326 schema:name readcube_id
43 schema:value 2bc56650c389e18bfe1c9539128d8ce3a34aa6485627675efa0573c246dc65fc
44 rdf:type schema:PropertyValue
45 N49460296fff6404e995fcc233f439734 schema:issueNumber 6
46 rdf:type schema:PublicationIssue
47 N4b05275edb6145d4a7f35a06b1138400 rdf:first sg:person.013275475434.78
48 rdf:rest rdf:nil
49 N50de7156be1840b69cb5428b1974f0df schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N6129d948acb64bb5901e4c6f92fcd78e schema:volumeNumber 25
52 rdf:type schema:PublicationVolume
53 Na5102b0356104665aaf0f7085cc652ac schema:name dimensions_id
54 schema:value pub.1009188227
55 rdf:type schema:PropertyValue
56 Na9c89b59aa444d53babfac7dd55ea4a3 rdf:first sg:person.0704043563.03
57 rdf:rest Nf3c2aa14b4ab476aa9307d7342522b3f
58 Ne231ca6f4de24495a3786aa82009ef05 rdf:first sg:person.010436724773.93
59 rdf:rest Na9c89b59aa444d53babfac7dd55ea4a3
60 Nf3c2aa14b4ab476aa9307d7342522b3f rdf:first sg:person.011311335457.98
61 rdf:rest N4b05275edb6145d4a7f35a06b1138400
62 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
63 schema:name Engineering
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
66 schema:name Materials Engineering
67 rdf:type schema:DefinedTerm
68 sg:journal.1042007 schema:issn 1059-9495
69 1544-1024
70 schema:name Journal of Materials Engineering and Performance
71 rdf:type schema:Periodical
72 sg:person.010436724773.93 schema:affiliation https://www.grid.ac/institutes/grid.9922.0
73 schema:familyName Kustra
74 schema:givenName Piotr
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010436724773.93
76 rdf:type schema:Person
77 sg:person.011311335457.98 schema:affiliation https://www.grid.ac/institutes/grid.425049.e
78 schema:familyName Płonka
79 schema:givenName Bartłomiej
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011311335457.98
81 rdf:type schema:Person
82 sg:person.013275475434.78 schema:affiliation https://www.grid.ac/institutes/grid.265074.2
83 schema:familyName Furushima
84 schema:givenName Tsuyoshi
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013275475434.78
86 rdf:type schema:Person
87 sg:person.0704043563.03 schema:affiliation https://www.grid.ac/institutes/grid.9922.0
88 schema:familyName Milenin
89 schema:givenName Andrij
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704043563.03
91 rdf:type schema:Person
92 https://doi.org/10.1002/1521-4052(200102)32:2<116::aid-mawe116>3.0.co;2-j schema:sameAs https://app.dimensions.ai/details/publication/pub.1015307162
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1002/mawe.200800412 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015740679
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0924-0136(92)90085-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020966274
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/j.acme.2012.04.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018634306
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1016/j.compstruc.2011.01.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007297447
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/j.jmatprotec.2004.09.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000922620
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/j.jmatprotec.2006.11.204 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046395322
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/j.jmatprotec.2013.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002783989
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/s0890-6955(01)00149-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031974110
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/s0924-0136(98)00205-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054663740
111 rdf:type schema:CreativeWork
112 https://doi.org/10.2478/amm-2014-0091 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040495944
113 rdf:type schema:CreativeWork
114 https://doi.org/10.2478/v10172-012-0150-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038531589
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.265074.2 schema:alternateName Tokyo Metropolitan University
117 schema:name Tokyo Metropolitan University, 1-1 Minami-osawa, 192-0397, Hachioji, Tokyo, Japan
118 rdf:type schema:Organization
119 https://www.grid.ac/institutes/grid.425049.e schema:alternateName Institute of Non-Ferrous Metals
120 schema:name Institute of Non-Ferrous Metals, Light Metals Division in Skawina, Piłsudskiego 19 Av., 32-050, Skawina, Poland
121 rdf:type schema:Organization
122 https://www.grid.ac/institutes/grid.9922.0 schema:alternateName AGH University of Science and Technology
123 schema:name AGH University of Science and Technology, Mickiewicza 30 Av., 30-059, Krakow, Poland
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...