Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-11-09

AUTHORS

K. Manigandan, T. S. Srivatsan, V. K. Vasudevan, D. Tammana, B. Poorganji

ABSTRACT

In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of “locally” ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress. More... »

PAGES

138-150

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-015-1736-2

DOI

http://dx.doi.org/10.1007/s11665-015-1736-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023594527


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manigandan", 
        "givenName": "K.", 
        "id": "sg:person.010412562231.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "id": "sg:person.015440524245.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasudevan", 
        "givenName": "V. K.", 
        "id": "sg:person.013545543625.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013545543625.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tammana", 
        "givenName": "D.", 
        "id": "sg:person.012651327001.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651327001.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poorganji", 
        "givenName": "B.", 
        "id": "sg:person.01357225661.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357225661.24"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02642857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024590501", 
          "https://doi.org/10.1007/bf02642857"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02646382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047215348", 
          "https://doi.org/10.1007/bf02646382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02654568", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037034901", 
          "https://doi.org/10.1007/bf02654568"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02670449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039006599", 
          "https://doi.org/10.1007/bf02670449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02646340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035043709", 
          "https://doi.org/10.1007/bf02646340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/physci236108b0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002540022", 
          "https://doi.org/10.1038/physci236108b0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02644080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003507415", 
          "https://doi.org/10.1007/bf02644080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00549917", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023577517", 
          "https://doi.org/10.1007/bf00549917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02667407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019930147", 
          "https://doi.org/10.1007/bf02667407"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02646515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048846887", 
          "https://doi.org/10.1007/bf02646515"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11-09", 
    "datePublishedReg": "2015-11-09", 
    "description": "In this\n paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax\u2122 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of \u201clocally\u201d ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11665-015-1736-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "25"
      }
    ], 
    "keywords": [
      "high-strength alloy steel", 
      "fine microscopic level", 
      "cyclic strain amplitude", 
      "alloy steel", 
      "fracture behavior", 
      "strain amplitude", 
      "strain cycling", 
      "cyclic strain resistance", 
      "final fracture behavior", 
      "intrinsic microstructural effects", 
      "resultant response stress", 
      "resultant fatigue life", 
      "microstructural constituents", 
      "fatigue life", 
      "deformation characteristics", 
      "mechanical behavior", 
      "fracture morphology", 
      "microstructural influence", 
      "microstructural effects", 
      "brittle mechanisms", 
      "response stress", 
      "cyclic straining", 
      "steel", 
      "elastic strain", 
      "strain resistance", 
      "onset of deformation", 
      "macroscopic mechanism", 
      "deformation", 
      "macroscopic level", 
      "ductile", 
      "entire range", 
      "straining", 
      "behavior", 
      "influence", 
      "plastic", 
      "amplitude", 
      "interactive influence", 
      "cycling", 
      "microscopic level", 
      "fatigue", 
      "morphology", 
      "fractures", 
      "stress", 
      "resistance", 
      "characteristics", 
      "failure", 
      "range", 
      "mechanism", 
      "tenax", 
      "results", 
      "strains", 
      "variation", 
      "constituents", 
      "effect", 
      "reversal", 
      "features", 
      "light", 
      "linear trend", 
      "response", 
      "trends", 
      "study", 
      "levels", 
      "life", 
      "onset", 
      "stress response", 
      "paper", 
      "high-strength alloy steel Tenax", 
      "alloy steel Tenax", 
      "steel Tenax"
    ], 
    "name": "Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel", 
    "pagination": "138-150", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023594527"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-015-1736-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-015-1736-2", 
      "https://app.dimensions.ai/details/publication/pub.1023594527"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:25", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_679.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11665-015-1736-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-015-1736-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-015-1736-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-015-1736-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-015-1736-2'


 

This table displays all metadata directly associated to this object as RDF triples.

198 TRIPLES      22 PREDICATES      104 URIs      86 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-015-1736-2 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N416da755eb8e4886b39ff82a547f46c0
4 schema:citation sg:pub.10.1007/bf00549917
5 sg:pub.10.1007/bf02642857
6 sg:pub.10.1007/bf02644080
7 sg:pub.10.1007/bf02646340
8 sg:pub.10.1007/bf02646382
9 sg:pub.10.1007/bf02646515
10 sg:pub.10.1007/bf02654568
11 sg:pub.10.1007/bf02667407
12 sg:pub.10.1007/bf02670449
13 sg:pub.10.1038/physci236108b0
14 schema:datePublished 2015-11-09
15 schema:datePublishedReg 2015-11-09
16 schema:description In this paper, the results of a study on microstructural influences on mechanical behavior of the high-strength alloy steel Tenax™ 310 are presented and discussed. Under the influence of fully reversed strain cycling, the stress response of this alloy steel revealed softening from the onset of deformation. Cyclic strain resistance exhibited a linear trend for the variation of both elastic strain amplitude with reversals-to-failure, and plastic strain amplitude with reversals-to-failure. Fracture morphology was essentially the same at the macroscopic level over the entire range of cyclic strain amplitudes examined. However, at the fine microscopic level, this high-strength alloy steel revealed fracture to be mixed-mode with features reminiscent of “locally” ductile and brittle mechanisms. The macroscopic mechanisms governing stress response at the fine microscopic level, resultant fatigue life, and final fracture behavior are presented and discussed in light of the mutually interactive influences of intrinsic microstructural effects, deformation characteristics of the microstructural constituents during fully reversed strain cycling, cyclic strain amplitude, and resultant response stress.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N2e3c268432f14fa199cae4a81f618e10
21 N53afdd3062ae4408915a608481f68a7b
22 sg:journal.1042007
23 schema:keywords alloy steel
24 alloy steel Tenax
25 amplitude
26 behavior
27 brittle mechanisms
28 characteristics
29 constituents
30 cyclic strain amplitude
31 cyclic strain resistance
32 cyclic straining
33 cycling
34 deformation
35 deformation characteristics
36 ductile
37 effect
38 elastic strain
39 entire range
40 failure
41 fatigue
42 fatigue life
43 features
44 final fracture behavior
45 fine microscopic level
46 fracture behavior
47 fracture morphology
48 fractures
49 high-strength alloy steel
50 high-strength alloy steel Tenax
51 influence
52 interactive influence
53 intrinsic microstructural effects
54 levels
55 life
56 light
57 linear trend
58 macroscopic level
59 macroscopic mechanism
60 mechanical behavior
61 mechanism
62 microscopic level
63 microstructural constituents
64 microstructural effects
65 microstructural influence
66 morphology
67 onset
68 onset of deformation
69 paper
70 plastic
71 range
72 resistance
73 response
74 response stress
75 resultant fatigue life
76 resultant response stress
77 results
78 reversal
79 steel
80 steel Tenax
81 strain amplitude
82 strain cycling
83 strain resistance
84 straining
85 strains
86 stress
87 stress response
88 study
89 tenax
90 trends
91 variation
92 schema:name Influence of Cyclic Straining on Fatigue, Deformation, and Fracture Behavior of High-Strength Alloy Steel
93 schema:pagination 138-150
94 schema:productId N33480f1d0b8e4d53909f9b9037669efa
95 N9eeaadc6a40b4e9096733e53855804b8
96 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023594527
97 https://doi.org/10.1007/s11665-015-1736-2
98 schema:sdDatePublished 2021-11-01T18:25
99 schema:sdLicense https://scigraph.springernature.com/explorer/license/
100 schema:sdPublisher Nbea1ea9b4db74b508b735ee45212a053
101 schema:url https://doi.org/10.1007/s11665-015-1736-2
102 sgo:license sg:explorer/license/
103 sgo:sdDataset articles
104 rdf:type schema:ScholarlyArticle
105 N106cbba4341640d283a90c82264263c7 rdf:first sg:person.01357225661.24
106 rdf:rest rdf:nil
107 N1766f73b74c942ccbe6a8552b77533b9 rdf:first sg:person.015440524245.80
108 rdf:rest Nc73f117256d74cb29bd7cda4dd7961da
109 N2e3c268432f14fa199cae4a81f618e10 schema:volumeNumber 25
110 rdf:type schema:PublicationVolume
111 N33480f1d0b8e4d53909f9b9037669efa schema:name dimensions_id
112 schema:value pub.1023594527
113 rdf:type schema:PropertyValue
114 N416da755eb8e4886b39ff82a547f46c0 rdf:first sg:person.010412562231.72
115 rdf:rest N1766f73b74c942ccbe6a8552b77533b9
116 N53afdd3062ae4408915a608481f68a7b schema:issueNumber 1
117 rdf:type schema:PublicationIssue
118 N58b5361768f846c5a32f5faf8248f16c rdf:first sg:person.012651327001.07
119 rdf:rest N106cbba4341640d283a90c82264263c7
120 N9eeaadc6a40b4e9096733e53855804b8 schema:name doi
121 schema:value 10.1007/s11665-015-1736-2
122 rdf:type schema:PropertyValue
123 Nbea1ea9b4db74b508b735ee45212a053 schema:name Springer Nature - SN SciGraph project
124 rdf:type schema:Organization
125 Nc73f117256d74cb29bd7cda4dd7961da rdf:first sg:person.013545543625.65
126 rdf:rest N58b5361768f846c5a32f5faf8248f16c
127 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
128 schema:name Engineering
129 rdf:type schema:DefinedTerm
130 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
131 schema:name Materials Engineering
132 rdf:type schema:DefinedTerm
133 sg:journal.1042007 schema:issn 1059-9495
134 1544-1024
135 schema:name Journal of Materials Engineering and Performance
136 schema:publisher Springer Nature
137 rdf:type schema:Periodical
138 sg:person.010412562231.72 schema:affiliation grid-institutes:grid.265881.0
139 schema:familyName Manigandan
140 schema:givenName K.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72
142 rdf:type schema:Person
143 sg:person.012651327001.07 schema:affiliation grid-institutes:grid.24827.3b
144 schema:familyName Tammana
145 schema:givenName D.
146 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651327001.07
147 rdf:type schema:Person
148 sg:person.013545543625.65 schema:affiliation grid-institutes:grid.24827.3b
149 schema:familyName Vasudevan
150 schema:givenName V. K.
151 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013545543625.65
152 rdf:type schema:Person
153 sg:person.01357225661.24 schema:affiliation grid-institutes:grid.24827.3b
154 schema:familyName Poorganji
155 schema:givenName B.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01357225661.24
157 rdf:type schema:Person
158 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
159 schema:familyName Srivatsan
160 schema:givenName T. S.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
162 rdf:type schema:Person
163 sg:pub.10.1007/bf00549917 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023577517
164 https://doi.org/10.1007/bf00549917
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/bf02642857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024590501
167 https://doi.org/10.1007/bf02642857
168 rdf:type schema:CreativeWork
169 sg:pub.10.1007/bf02644080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003507415
170 https://doi.org/10.1007/bf02644080
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/bf02646340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035043709
173 https://doi.org/10.1007/bf02646340
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/bf02646382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047215348
176 https://doi.org/10.1007/bf02646382
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/bf02646515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048846887
179 https://doi.org/10.1007/bf02646515
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/bf02654568 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037034901
182 https://doi.org/10.1007/bf02654568
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/bf02667407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019930147
185 https://doi.org/10.1007/bf02667407
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/bf02670449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039006599
188 https://doi.org/10.1007/bf02670449
189 rdf:type schema:CreativeWork
190 sg:pub.10.1038/physci236108b0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002540022
191 https://doi.org/10.1038/physci236108b0
192 rdf:type schema:CreativeWork
193 grid-institutes:grid.24827.3b schema:alternateName School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA
194 schema:name School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA
195 rdf:type schema:Organization
196 grid-institutes:grid.265881.0 schema:alternateName Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA
197 schema:name Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA
198 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...