Aluminum Matrix Composites Strengthened with CuZrAgAl Amorphous Atomized Powder Particles View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-06

AUTHORS

Jan Dutkiewicz, Łukasz Rogal, Wojciech Wajda, Agata Kukuła-Kurzyniec, Christian Coddet, Lucas Dembinski

ABSTRACT

The Al-matrix composites were prepared by hot pressing in vacuum of an aluminum powder with 20 and 40 wt.% addition of the amorphous Cu43Zr43Ag7Al7 alloy (numbers indicate at.%) obtained using gas atomization method. The amorphous structure of the powder was confirmed using x-ray diffraction, DSC, and TEM. The average size of mostly spherical particles was 100 μm, so the powder was sieved to obtain maximum size of 60 μm. The composites were prepared using uniaxial cold pressing in vacuum and at a temperature of 400 °C. The composites of hardness from 43 to 53 HV were obtained for both additions of the amorphous phase. They reached compression strength of 150 MPa for 20% of amorphous phase and 250 MPa for the higher content. The modest hardening effect was caused by crack initiation at Al/amorphous interfaces. The amorphous phase was only partially crystallized in the hot-pressed composites, what did not cause hardness decrease. The application of nanocrystalline aluminum powders obtained by high-energy ball milling for the matrix of composites allowed obtaining nanocrystalline aluminum matrix composites of size near 150 nm, strengthened with the amorphous powders, whose compression strength was near 550 MPa for the composite containing 40% of the amorphous phase and slightly lower for the composite containing 20% of the phase. They showed much higher ductility of 23% in comparison with 7% for the composite containing 40% amorphous phase. The distribution of the strengthening phase in the nanocrystalline matrix was not homogeneous; the amorphous particles formed bands, where majority of cracks nucleated during compression test. More... »

PAGES

2266-2273

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-014-1282-3

DOI

http://dx.doi.org/10.1007/s11665-014-1282-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006956486


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Metallurgy and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.425026.7", 
          "name": [
            "Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dutkiewicz", 
        "givenName": "Jan", 
        "id": "sg:person.0604230345.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604230345.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metallurgy and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.425026.7", 
          "name": [
            "Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rogal", 
        "givenName": "\u0141ukasz", 
        "id": "sg:person.013662040541.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013662040541.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metallurgy and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.425026.7", 
          "name": [
            "Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wajda", 
        "givenName": "Wojciech", 
        "id": "sg:person.07520275421.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07520275421.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Metallurgy and Materials Science", 
          "id": "https://www.grid.ac/institutes/grid.425026.7", 
          "name": [
            "Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, Krak\u00f3w, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuku\u0142a-Kurzyniec", 
        "givenName": "Agata", 
        "id": "sg:person.016552711641.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016552711641.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Technology of Belfort-Montb\u00e9liard", 
          "id": "https://www.grid.ac/institutes/grid.23082.3b", 
          "name": [
            "Universite de Technologie de Belfort-Montbeliard, Site De Sevenans, 90010, Belfort, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Coddet", 
        "givenName": "Christian", 
        "id": "sg:person.012731705053.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012731705053.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Technology of Belfort-Montb\u00e9liard", 
          "id": "https://www.grid.ac/institutes/grid.23082.3b", 
          "name": [
            "Universite de Technologie de Belfort-Montbeliard, Site De Sevenans, 90010, Belfort, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dembinski", 
        "givenName": "Lucas", 
        "id": "sg:person.07457043041.81", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07457043041.81"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.msea.2006.02.283", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001439600"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2006.02.326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009482678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchar.2012.04.016", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015426728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2011.02.037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015825005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(03)00338-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017363730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0921-5093(03)00338-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017363730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2004.10.078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020037257"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matchemphys.2007.03.041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029734030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scriptamat.2004.02.038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032146692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2013.05.072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033792510"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.compositesb.2013.04.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044066537"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.msea.2006.02.314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048097181"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.426-432.2467", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072115212"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-06", 
    "datePublishedReg": "2015-06-01", 
    "description": "The Al-matrix composites were prepared by hot pressing in vacuum of an aluminum powder with 20 and 40 wt.% addition of the amorphous Cu43Zr43Ag7Al7 alloy (numbers indicate at.%) obtained using gas atomization method. The amorphous structure of the powder was confirmed using x-ray diffraction, DSC, and TEM. The average size of mostly spherical particles was 100 \u03bcm, so the powder was sieved to obtain maximum size of 60 \u03bcm. The composites were prepared using uniaxial cold pressing in vacuum and at a temperature of 400 \u00b0C. The composites of hardness from 43 to 53 HV were obtained for both additions of the amorphous phase. They reached compression strength of 150 MPa for 20% of amorphous phase and 250 MPa for the higher content. The modest hardening effect was caused by crack initiation at Al/amorphous interfaces. The amorphous phase was only partially crystallized in the hot-pressed composites, what did not cause hardness decrease. The application of nanocrystalline aluminum powders obtained by high-energy ball milling for the matrix of composites allowed obtaining nanocrystalline aluminum matrix composites of size near 150 nm, strengthened with the amorphous powders, whose compression strength was near 550 MPa for the composite containing 40% of the amorphous phase and slightly lower for the composite containing 20% of the phase. They showed much higher ductility of 23% in comparison with 7% for the composite containing 40% amorphous phase. The distribution of the strengthening phase in the nanocrystalline matrix was not homogeneous; the amorphous particles formed bands, where majority of cracks nucleated during compression test.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11665-014-1282-3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "24"
      }
    ], 
    "name": "Aluminum Matrix Composites Strengthened with CuZrAgAl Amorphous Atomized Powder Particles", 
    "pagination": "2266-2273", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2123300d5013c576d2a262c8048e7d76e6e86572342ef043af0f613e6a570d38"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-014-1282-3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006956486"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-014-1282-3", 
      "https://app.dimensions.ai/details/publication/pub.1006956486"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T17:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8672_00000520.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11665-014-1282-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-014-1282-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-014-1282-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-014-1282-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-014-1282-3'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-014-1282-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Na191945a9a06430aaf9482eca84ca942
4 schema:citation https://doi.org/10.1016/j.compositesb.2013.04.019
5 https://doi.org/10.1016/j.jallcom.2011.02.037
6 https://doi.org/10.1016/j.matchar.2012.04.016
7 https://doi.org/10.1016/j.matchemphys.2007.03.041
8 https://doi.org/10.1016/j.matlet.2004.10.078
9 https://doi.org/10.1016/j.msea.2006.02.283
10 https://doi.org/10.1016/j.msea.2006.02.314
11 https://doi.org/10.1016/j.msea.2006.02.326
12 https://doi.org/10.1016/j.msea.2013.05.072
13 https://doi.org/10.1016/j.scriptamat.2004.02.038
14 https://doi.org/10.1016/s0921-5093(03)00338-1
15 https://doi.org/10.4028/www.scientific.net/msf.426-432.2467
16 schema:datePublished 2015-06
17 schema:datePublishedReg 2015-06-01
18 schema:description The Al-matrix composites were prepared by hot pressing in vacuum of an aluminum powder with 20 and 40 wt.% addition of the amorphous Cu43Zr43Ag7Al7 alloy (numbers indicate at.%) obtained using gas atomization method. The amorphous structure of the powder was confirmed using x-ray diffraction, DSC, and TEM. The average size of mostly spherical particles was 100 μm, so the powder was sieved to obtain maximum size of 60 μm. The composites were prepared using uniaxial cold pressing in vacuum and at a temperature of 400 °C. The composites of hardness from 43 to 53 HV were obtained for both additions of the amorphous phase. They reached compression strength of 150 MPa for 20% of amorphous phase and 250 MPa for the higher content. The modest hardening effect was caused by crack initiation at Al/amorphous interfaces. The amorphous phase was only partially crystallized in the hot-pressed composites, what did not cause hardness decrease. The application of nanocrystalline aluminum powders obtained by high-energy ball milling for the matrix of composites allowed obtaining nanocrystalline aluminum matrix composites of size near 150 nm, strengthened with the amorphous powders, whose compression strength was near 550 MPa for the composite containing 40% of the amorphous phase and slightly lower for the composite containing 20% of the phase. They showed much higher ductility of 23% in comparison with 7% for the composite containing 40% amorphous phase. The distribution of the strengthening phase in the nanocrystalline matrix was not homogeneous; the amorphous particles formed bands, where majority of cracks nucleated during compression test.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N24cfb523f42d4073af222ded3ec14396
23 N742d551b6f34488abb3f205dde589742
24 sg:journal.1042007
25 schema:name Aluminum Matrix Composites Strengthened with CuZrAgAl Amorphous Atomized Powder Particles
26 schema:pagination 2266-2273
27 schema:productId N086ca3db89264e0cadce5e2b63195ede
28 Nd5e54cb43b204e6cbf7014fd3173b8b3
29 Ne584c649280f4e1594ef0d788e93e808
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006956486
31 https://doi.org/10.1007/s11665-014-1282-3
32 schema:sdDatePublished 2019-04-10T17:33
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Ne6a26f75add149f5a208f3b096f84914
35 schema:url http://link.springer.com/10.1007%2Fs11665-014-1282-3
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N086ca3db89264e0cadce5e2b63195ede schema:name dimensions_id
40 schema:value pub.1006956486
41 rdf:type schema:PropertyValue
42 N08966de582654fdb8c54b0ba12cc455c rdf:first sg:person.07520275421.02
43 rdf:rest N46432176d28d49d886664243640483d5
44 N24cfb523f42d4073af222ded3ec14396 schema:issueNumber 6
45 rdf:type schema:PublicationIssue
46 N3368146ac9d84508a5e766add2ba4ed6 rdf:first sg:person.012731705053.95
47 rdf:rest N8f96b14985334cceb4f6816044421824
48 N46432176d28d49d886664243640483d5 rdf:first sg:person.016552711641.87
49 rdf:rest N3368146ac9d84508a5e766add2ba4ed6
50 N742d551b6f34488abb3f205dde589742 schema:volumeNumber 24
51 rdf:type schema:PublicationVolume
52 N8f96b14985334cceb4f6816044421824 rdf:first sg:person.07457043041.81
53 rdf:rest rdf:nil
54 N9da40a28bcb24bd8be91e15b794c8a6d rdf:first sg:person.013662040541.49
55 rdf:rest N08966de582654fdb8c54b0ba12cc455c
56 Na191945a9a06430aaf9482eca84ca942 rdf:first sg:person.0604230345.55
57 rdf:rest N9da40a28bcb24bd8be91e15b794c8a6d
58 Nd5e54cb43b204e6cbf7014fd3173b8b3 schema:name doi
59 schema:value 10.1007/s11665-014-1282-3
60 rdf:type schema:PropertyValue
61 Ne584c649280f4e1594ef0d788e93e808 schema:name readcube_id
62 schema:value 2123300d5013c576d2a262c8048e7d76e6e86572342ef043af0f613e6a570d38
63 rdf:type schema:PropertyValue
64 Ne6a26f75add149f5a208f3b096f84914 schema:name Springer Nature - SN SciGraph project
65 rdf:type schema:Organization
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
70 schema:name Materials Engineering
71 rdf:type schema:DefinedTerm
72 sg:journal.1042007 schema:issn 1059-9495
73 1544-1024
74 schema:name Journal of Materials Engineering and Performance
75 rdf:type schema:Periodical
76 sg:person.012731705053.95 schema:affiliation https://www.grid.ac/institutes/grid.23082.3b
77 schema:familyName Coddet
78 schema:givenName Christian
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012731705053.95
80 rdf:type schema:Person
81 sg:person.013662040541.49 schema:affiliation https://www.grid.ac/institutes/grid.425026.7
82 schema:familyName Rogal
83 schema:givenName Łukasz
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013662040541.49
85 rdf:type schema:Person
86 sg:person.016552711641.87 schema:affiliation https://www.grid.ac/institutes/grid.425026.7
87 schema:familyName Kukuła-Kurzyniec
88 schema:givenName Agata
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016552711641.87
90 rdf:type schema:Person
91 sg:person.0604230345.55 schema:affiliation https://www.grid.ac/institutes/grid.425026.7
92 schema:familyName Dutkiewicz
93 schema:givenName Jan
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604230345.55
95 rdf:type schema:Person
96 sg:person.07457043041.81 schema:affiliation https://www.grid.ac/institutes/grid.23082.3b
97 schema:familyName Dembinski
98 schema:givenName Lucas
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07457043041.81
100 rdf:type schema:Person
101 sg:person.07520275421.02 schema:affiliation https://www.grid.ac/institutes/grid.425026.7
102 schema:familyName Wajda
103 schema:givenName Wojciech
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07520275421.02
105 rdf:type schema:Person
106 https://doi.org/10.1016/j.compositesb.2013.04.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044066537
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/j.jallcom.2011.02.037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015825005
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/j.matchar.2012.04.016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015426728
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/j.matchemphys.2007.03.041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029734030
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/j.matlet.2004.10.078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020037257
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/j.msea.2006.02.283 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001439600
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.msea.2006.02.314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048097181
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.msea.2006.02.326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009482678
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.msea.2013.05.072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033792510
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.scriptamat.2004.02.038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032146692
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/s0921-5093(03)00338-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017363730
127 rdf:type schema:CreativeWork
128 https://doi.org/10.4028/www.scientific.net/msf.426-432.2467 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072115212
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.23082.3b schema:alternateName University of Technology of Belfort-Montbéliard
131 schema:name Universite de Technologie de Belfort-Montbeliard, Site De Sevenans, 90010, Belfort, France
132 rdf:type schema:Organization
133 https://www.grid.ac/institutes/grid.425026.7 schema:alternateName Institute of Metallurgy and Materials Science
134 schema:name Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, Kraków, Poland
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...