Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-03-18

AUTHORS

K. Manigandan, T. S. Srivatsan, Deepthi Tammana, Behrang Poorgangi, Vijay K. Vasudevan

ABSTRACT

The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress. More... »

PAGES

1799-1814

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-014-0934-7

DOI

http://dx.doi.org/10.1007/s11665-014-0934-7

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1050901629


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Manigandan", 
        "givenName": "K.", 
        "id": "sg:person.010412562231.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "id": "sg:person.015440524245.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tammana", 
        "givenName": "Deepthi", 
        "id": "sg:person.012651327001.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651327001.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poorgangi", 
        "givenName": "Behrang", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.24827.3b", 
          "name": [
            "School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasudevan", 
        "givenName": "Vijay K.", 
        "id": "sg:person.013545543625.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013545543625.65"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02646340", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035043709", 
          "https://doi.org/10.1007/bf02646340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02644080", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003507415", 
          "https://doi.org/10.1007/bf02644080"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02646515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048846887", 
          "https://doi.org/10.1007/bf02646515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02670449", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039006599", 
          "https://doi.org/10.1007/bf02670449"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1361/105994901770344872", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008268096", 
          "https://doi.org/10.1361/105994901770344872"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02646382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047215348", 
          "https://doi.org/10.1007/bf02646382"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03220940", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029755050", 
          "https://doi.org/10.1007/bf03220940"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-03-18", 
    "datePublishedReg": "2014-03-18", 
    "description": "The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300\u00a0M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11665-014-0934-7", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "23"
      }
    ], 
    "keywords": [
      "cyclic strain resistance", 
      "cyclic stress response", 
      "test specimen orientation", 
      "cyclic strain amplitude", 
      "fracture behavior", 
      "fatigue life", 
      "strain amplitude", 
      "alloy steel", 
      "deformation characteristics", 
      "ultra-high strength alloy steel", 
      "test specimens", 
      "fine microscopic level", 
      "final fracture behavior", 
      "intrinsic microstructural effects", 
      "specimen orientation", 
      "plastic strain amplitude", 
      "strain resistance", 
      "steel 300", 
      "fatigue properties", 
      "microstructural constituents", 
      "transverse orientation", 
      "cyclic stress", 
      "microstructural effects", 
      "initial hardening", 
      "catastrophic failure", 
      "fracture characteristics", 
      "response stress", 
      "strain response", 
      "elastic strain", 
      "steel", 
      "technical manuscript", 
      "longitudinal orientation", 
      "microstructure", 
      "hardening", 
      "entire range", 
      "deformation", 
      "marginal improvement", 
      "fractures", 
      "orientation", 
      "behavior", 
      "plastic", 
      "stress", 
      "amplitude", 
      "characteristics", 
      "resistance", 
      "specimens", 
      "interactive influence", 
      "microscopic observations", 
      "equivalent values", 
      "properties", 
      "failure", 
      "large portion", 
      "microscopic level", 
      "influence", 
      "combination", 
      "range", 
      "cycle", 
      "improvement", 
      "mechanism", 
      "strains", 
      "variation", 
      "constituents", 
      "values", 
      "effect", 
      "response", 
      "observations", 
      "reversal", 
      "light", 
      "linear trend", 
      "life", 
      "portion", 
      "trends", 
      "focus", 
      "manuscript", 
      "levels", 
      "role", 
      "stress response", 
      "records", 
      "specific role", 
      "COMPETING", 
      "alloy steel 300", 
      "cyclic strain amplitude-controlled fatigue properties", 
      "strain amplitude-controlled fatigue properties", 
      "amplitude-controlled fatigue properties", 
      "strength alloy steel", 
      "log elastic strain", 
      "log reversals", 
      "fine microscopic observations", 
      "High Strength Low Alloy Steel 300 M", 
      "Strength Low Alloy Steel 300 M", 
      "Low Alloy Steel 300 M", 
      "Alloy Steel 300 M", 
      "Steel 300 M"
    ], 
    "name": "Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M", 
    "pagination": "1799-1814", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1050901629"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-014-0934-7"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-014-0934-7", 
      "https://app.dimensions.ai/details/publication/pub.1050901629"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_625.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11665-014-0934-7"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-014-0934-7'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-014-0934-7'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-014-0934-7'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-014-0934-7'


 

This table displays all metadata directly associated to this object as RDF triples.

209 TRIPLES      22 PREDICATES      125 URIs      110 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-014-0934-7 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N0f9350bf0b1a4a94a3a971f5d8fd4562
4 schema:citation sg:pub.10.1007/bf02644080
5 sg:pub.10.1007/bf02646340
6 sg:pub.10.1007/bf02646382
7 sg:pub.10.1007/bf02646515
8 sg:pub.10.1007/bf02670449
9 sg:pub.10.1007/bf03220940
10 sg:pub.10.1361/105994901770344872
11 schema:datePublished 2014-03-18
12 schema:datePublishedReg 2014-03-18
13 schema:description The focus of this technical manuscript is a record of the specific role of microstructure and test specimen orientation on cyclic stress response, cyclic strain resistance, and cyclic stress versus strain response, deformation and fracture behavior of alloy steel 300 M. The cyclic strain amplitude-controlled fatigue properties of this ultra-high strength alloy steel revealed a linear trend for the variation of log elastic strain amplitude with log reversals-to-failure, and log plastic strain amplitude with log reversals-to-failure for both longitudinal and transverse orientations. Test specimens of the longitudinal orientation showed only a marginal improvement over the transverse orientation at equivalent values of plastic strain amplitude. Cyclic stress response revealed a combination of initial hardening for the first few cycles followed by gradual softening for a large portion of fatigue life before culminating in rapid softening prior to catastrophic failure by fracture. Fracture characteristics of test specimens of this alloy steel were different at both the macroscopic and fine microscopic levels over the entire range of cyclic strain amplitudes examined. Both macroscopic and fine microscopic observations revealed fracture to be a combination of both brittle and ductile mechanisms. The underlying mechanisms governing stress response, deformation characteristics, fatigue life, and final fracture behavior are presented and discussed in light of the competing and mutually interactive influences of test specimen orientation, intrinsic microstructural effects, deformation characteristics of the microstructural constituents, cyclic strain amplitude, and response stress.
14 schema:genre article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N36ea5c1867244882ac70424ee1299f52
18 Nee22926ba4bd4aadba9da6e70e4c4e55
19 sg:journal.1042007
20 schema:keywords Alloy Steel 300 M
21 COMPETING
22 High Strength Low Alloy Steel 300 M
23 Low Alloy Steel 300 M
24 Steel 300 M
25 Strength Low Alloy Steel 300 M
26 alloy steel
27 alloy steel 300
28 amplitude
29 amplitude-controlled fatigue properties
30 behavior
31 catastrophic failure
32 characteristics
33 combination
34 constituents
35 cycle
36 cyclic strain amplitude
37 cyclic strain amplitude-controlled fatigue properties
38 cyclic strain resistance
39 cyclic stress
40 cyclic stress response
41 deformation
42 deformation characteristics
43 effect
44 elastic strain
45 entire range
46 equivalent values
47 failure
48 fatigue life
49 fatigue properties
50 final fracture behavior
51 fine microscopic level
52 fine microscopic observations
53 focus
54 fracture behavior
55 fracture characteristics
56 fractures
57 hardening
58 improvement
59 influence
60 initial hardening
61 interactive influence
62 intrinsic microstructural effects
63 large portion
64 levels
65 life
66 light
67 linear trend
68 log elastic strain
69 log reversals
70 longitudinal orientation
71 manuscript
72 marginal improvement
73 mechanism
74 microscopic level
75 microscopic observations
76 microstructural constituents
77 microstructural effects
78 microstructure
79 observations
80 orientation
81 plastic
82 plastic strain amplitude
83 portion
84 properties
85 range
86 records
87 resistance
88 response
89 response stress
90 reversal
91 role
92 specific role
93 specimen orientation
94 specimens
95 steel
96 steel 300
97 strain amplitude
98 strain amplitude-controlled fatigue properties
99 strain resistance
100 strain response
101 strains
102 strength alloy steel
103 stress
104 stress response
105 technical manuscript
106 test specimen orientation
107 test specimens
108 transverse orientation
109 trends
110 ultra-high strength alloy steel
111 values
112 variation
113 schema:name Cyclic Strain Resistance, Stress Response, Fatigue Life, and Fracture Behavior of High Strength Low Alloy Steel 300 M
114 schema:pagination 1799-1814
115 schema:productId Nc3c56501c7f144c8a3b9923fe0a1e525
116 Nf5002d2d56da442cb3e47ed4b4e979f2
117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050901629
118 https://doi.org/10.1007/s11665-014-0934-7
119 schema:sdDatePublished 2021-11-01T18:22
120 schema:sdLicense https://scigraph.springernature.com/explorer/license/
121 schema:sdPublisher N75103ecc4c664e189268869e9371c39a
122 schema:url https://doi.org/10.1007/s11665-014-0934-7
123 sgo:license sg:explorer/license/
124 sgo:sdDataset articles
125 rdf:type schema:ScholarlyArticle
126 N0c2ee328192d4f6d891bbb16a55073aa schema:affiliation grid-institutes:grid.24827.3b
127 schema:familyName Poorgangi
128 schema:givenName Behrang
129 rdf:type schema:Person
130 N0f9350bf0b1a4a94a3a971f5d8fd4562 rdf:first sg:person.010412562231.72
131 rdf:rest N6e063e55520a4e49b5be31cf94840ca8
132 N1468118b35da4bc89236560051d46272 rdf:first N0c2ee328192d4f6d891bbb16a55073aa
133 rdf:rest N5b26dabe7ee3400fb3d51dea2d5e1b4e
134 N36ea5c1867244882ac70424ee1299f52 schema:volumeNumber 23
135 rdf:type schema:PublicationVolume
136 N5b26dabe7ee3400fb3d51dea2d5e1b4e rdf:first sg:person.013545543625.65
137 rdf:rest rdf:nil
138 N6e063e55520a4e49b5be31cf94840ca8 rdf:first sg:person.015440524245.80
139 rdf:rest Nf6a6cd7cf04148e3bea3bbc7de662d6b
140 N75103ecc4c664e189268869e9371c39a schema:name Springer Nature - SN SciGraph project
141 rdf:type schema:Organization
142 Nc3c56501c7f144c8a3b9923fe0a1e525 schema:name doi
143 schema:value 10.1007/s11665-014-0934-7
144 rdf:type schema:PropertyValue
145 Nee22926ba4bd4aadba9da6e70e4c4e55 schema:issueNumber 5
146 rdf:type schema:PublicationIssue
147 Nf5002d2d56da442cb3e47ed4b4e979f2 schema:name dimensions_id
148 schema:value pub.1050901629
149 rdf:type schema:PropertyValue
150 Nf6a6cd7cf04148e3bea3bbc7de662d6b rdf:first sg:person.012651327001.07
151 rdf:rest N1468118b35da4bc89236560051d46272
152 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
153 schema:name Engineering
154 rdf:type schema:DefinedTerm
155 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
156 schema:name Materials Engineering
157 rdf:type schema:DefinedTerm
158 sg:journal.1042007 schema:issn 1059-9495
159 1544-1024
160 schema:name Journal of Materials Engineering and Performance
161 schema:publisher Springer Nature
162 rdf:type schema:Periodical
163 sg:person.010412562231.72 schema:affiliation grid-institutes:grid.265881.0
164 schema:familyName Manigandan
165 schema:givenName K.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72
167 rdf:type schema:Person
168 sg:person.012651327001.07 schema:affiliation grid-institutes:grid.24827.3b
169 schema:familyName Tammana
170 schema:givenName Deepthi
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012651327001.07
172 rdf:type schema:Person
173 sg:person.013545543625.65 schema:affiliation grid-institutes:grid.24827.3b
174 schema:familyName Vasudevan
175 schema:givenName Vijay K.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013545543625.65
177 rdf:type schema:Person
178 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
179 schema:familyName Srivatsan
180 schema:givenName T. S.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
182 rdf:type schema:Person
183 sg:pub.10.1007/bf02644080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003507415
184 https://doi.org/10.1007/bf02644080
185 rdf:type schema:CreativeWork
186 sg:pub.10.1007/bf02646340 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035043709
187 https://doi.org/10.1007/bf02646340
188 rdf:type schema:CreativeWork
189 sg:pub.10.1007/bf02646382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047215348
190 https://doi.org/10.1007/bf02646382
191 rdf:type schema:CreativeWork
192 sg:pub.10.1007/bf02646515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048846887
193 https://doi.org/10.1007/bf02646515
194 rdf:type schema:CreativeWork
195 sg:pub.10.1007/bf02670449 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039006599
196 https://doi.org/10.1007/bf02670449
197 rdf:type schema:CreativeWork
198 sg:pub.10.1007/bf03220940 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029755050
199 https://doi.org/10.1007/bf03220940
200 rdf:type schema:CreativeWork
201 sg:pub.10.1361/105994901770344872 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008268096
202 https://doi.org/10.1361/105994901770344872
203 rdf:type schema:CreativeWork
204 grid-institutes:grid.24827.3b schema:alternateName School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA
205 schema:name School of Dynamic Systems, Materials Science and Engineering Program, University of Cincinnati, 45221-0072, Cincinnati, OH, USA
206 rdf:type schema:Organization
207 grid-institutes:grid.265881.0 schema:alternateName Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA
208 schema:name Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA
209 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...