A Fatigue Model for Discontinuous Particulate-Reinforced Aluminum Alloy Composite: Influence of Microstructure View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-11-19

AUTHORS

R. R. McCullough, J. B. Jordon, A. T. Brammer, K. Manigandan, T. S. Srivatsan, P. G. Allison, T. W. Rushing

ABSTRACT

In this paper, the use of a microstructure-sensitive fatigue model is put forth for the analysis of discontinuously reinforced aluminum alloy metal matrix composite. The fatigue model was used for a ceramic particle-reinforced aluminum alloy deformed under conditions of fully reversed strain control. Experimental results revealed the aluminum alloy to be strongly influenced by volume fraction of the particulate reinforcement phase under conditions of strain-controlled fatigue. The model safely characterizes the evolution of fatigue damage in this aluminum alloy composite into the distinct stages of crack initiation and crack growth culminating in failure. The model is able to capture the specific influence of particle volume fraction, particle size, and nearest neighbor distance in quantifying fatigue life. The model yields good results for correlation of the predicted results with the experimental test results on the fatigue behavior of the chosen aluminum alloy for two different percentages of the ceramic particle reinforcement. Further, the model illustrates that both particle size and volume fraction are key factors that govern fatigue lifetime. This conclusion is well supported by fractographic observations of the cyclically deformed and failed specimens. More... »

PAGES

65-76

References to SciGraph publications

  • 2012-03-22. Low-Cycle Fatigue Behavior of Die-Cast Mg Alloys AZ91 and AM60 in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2009-11-04. Microstructural Inclusion Influence on Fatigue of a Cast A356 Aluminum Alloy in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2000-04. Low cycle fatigue behaviour of particulate reinforced metal matrix composites in JOURNAL OF MATERIALS SCIENCE
  • 2006-09-19. Fatigue property of semisolid A357 aluminum alloy under different heat treatment conditions in JOURNAL OF MATERIALS SCIENCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11665-013-0766-x

    DOI

    http://dx.doi.org/10.1007/s11665-013-0766-x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1006927603


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, The University of Alabama, 35487, Tuscaloosa, Al, USA", 
              "id": "http://www.grid.ac/institutes/grid.411015.0", 
              "name": [
                "Department of Mechanical Engineering, The University of Alabama, 35487, Tuscaloosa, Al, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "McCullough", 
            "givenName": "R. R.", 
            "id": "sg:person.07463122174.37", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463122174.37"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, The University of Alabama, 35487, Tuscaloosa, Al, USA", 
              "id": "http://www.grid.ac/institutes/grid.411015.0", 
              "name": [
                "Department of Mechanical Engineering, The University of Alabama, 35487, Tuscaloosa, Al, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Jordon", 
            "givenName": "J. B.", 
            "id": "sg:person.07662551615.89", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662551615.89"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, The University of Alabama, 35487, Tuscaloosa, Al, USA", 
              "id": "http://www.grid.ac/institutes/grid.411015.0", 
              "name": [
                "Department of Mechanical Engineering, The University of Alabama, 35487, Tuscaloosa, Al, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Brammer", 
            "givenName": "A. T.", 
            "id": "sg:person.014667314002.10", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014667314002.10"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.265881.0", 
              "name": [
                "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Manigandan", 
            "givenName": "K.", 
            "id": "sg:person.010412562231.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.265881.0", 
              "name": [
                "Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Srivatsan", 
            "givenName": "T. S.", 
            "id": "sg:person.015440524245.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Geotechnical & Structures Laboratory, Engineer Research & Development Center, US Army Corps of Engineers, 39180, Vicksburg, MS, USA", 
              "id": "http://www.grid.ac/institutes/grid.417553.1", 
              "name": [
                "Geotechnical & Structures Laboratory, Engineer Research & Development Center, US Army Corps of Engineers, 39180, Vicksburg, MS, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Allison", 
            "givenName": "P. G.", 
            "id": "sg:person.0754504306.42", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754504306.42"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Geotechnical & Structures Laboratory, Engineer Research & Development Center, US Army Corps of Engineers, 39180, Vicksburg, MS, USA", 
              "id": "http://www.grid.ac/institutes/grid.417553.1", 
              "name": [
                "Geotechnical & Structures Laboratory, Engineer Research & Development Center, US Army Corps of Engineers, 39180, Vicksburg, MS, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rushing", 
            "givenName": "T. W.", 
            "id": "sg:person.013771337723.32", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013771337723.32"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11661-012-1114-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1015770164", 
              "https://doi.org/10.1007/s11661-012-1114-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-009-0088-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043794910", 
              "https://doi.org/10.1007/s11661-009-0088-7"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1004720300774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1052379133", 
              "https://doi.org/10.1023/a:1004720300774"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10853-006-0838-5", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022391623", 
              "https://doi.org/10.1007/s10853-006-0838-5"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-11-19", 
        "datePublishedReg": "2013-11-19", 
        "description": "In this paper, the use of a microstructure-sensitive fatigue model is put forth for the analysis of discontinuously reinforced aluminum alloy metal matrix composite. The fatigue model was used for a ceramic particle-reinforced aluminum alloy deformed under conditions of fully reversed strain control. Experimental results revealed the aluminum alloy to be strongly influenced by volume fraction of the particulate reinforcement phase under conditions of strain-controlled fatigue. The model safely characterizes the evolution of fatigue damage in this aluminum alloy composite into the distinct stages of crack initiation and crack growth culminating in failure. The model is able to capture the specific influence of particle volume fraction, particle size, and nearest neighbor distance in quantifying fatigue life. The model yields good results for correlation of the predicted results with the experimental test results on the fatigue behavior of the chosen aluminum alloy for two different percentages of the ceramic particle reinforcement. Further, the model illustrates that both particle size and volume fraction are key factors that govern fatigue lifetime. This conclusion is well supported by fractographic observations of the cyclically deformed and failed specimens.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11665-013-0766-x", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042007", 
            "issn": [
              "1059-9495", 
              "1544-1024"
            ], 
            "name": "Journal of Materials Engineering and Performance", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "keywords": [
          "aluminum alloy", 
          "fatigue model", 
          "volume fraction", 
          "microstructure-sensitive fatigue model", 
          "aluminium alloy metal matrix composites", 
          "alloy metal matrix composites", 
          "strain-controlled fatigue", 
          "particulate reinforcement phase", 
          "ceramic particle reinforcements", 
          "aluminum alloy composites", 
          "metal matrix composites", 
          "influence of microstructure", 
          "particle volume fraction", 
          "particle size", 
          "experimental test results", 
          "particle reinforcement", 
          "alloy composites", 
          "matrix composites", 
          "crack initiation", 
          "fatigue behavior", 
          "reinforcement phase", 
          "fatigue life", 
          "fractographic observations", 
          "fatigue lifetime", 
          "fatigue damage", 
          "strain control", 
          "alloy", 
          "different percentages", 
          "composites", 
          "test results", 
          "experimental results", 
          "microstructure", 
          "reinforcement", 
          "model", 
          "key factor", 
          "influence", 
          "conditions", 
          "fatigue", 
          "size", 
          "fraction", 
          "results", 
          "good results", 
          "phase", 
          "distinct stages", 
          "behavior", 
          "specimens", 
          "lifetime", 
          "specific influence", 
          "nearest neighbor distance", 
          "damage", 
          "failure", 
          "distance", 
          "evolution", 
          "neighbor distance", 
          "control", 
          "observations", 
          "use", 
          "analysis", 
          "growth", 
          "initiation", 
          "stage", 
          "correlation", 
          "factors", 
          "percentage", 
          "life", 
          "conclusion", 
          "paper", 
          "ceramic particle-reinforced aluminum alloy", 
          "particle-reinforced aluminum alloy", 
          "quantifying fatigue life", 
          "Discontinuous Particulate-Reinforced Aluminum Alloy Composite", 
          "Particulate-Reinforced Aluminum Alloy Composite"
        ], 
        "name": "A Fatigue Model for Discontinuous Particulate-Reinforced Aluminum Alloy Composite: Influence of Microstructure", 
        "pagination": "65-76", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1006927603"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11665-013-0766-x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11665-013-0766-x", 
          "https://app.dimensions.ai/details/publication/pub.1006927603"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:20", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_603.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11665-013-0766-x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-013-0766-x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-013-0766-x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-013-0766-x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-013-0766-x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    194 TRIPLES      22 PREDICATES      101 URIs      89 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11665-013-0766-x schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N66917d60acfe4c90ac9e4cc7562d8eb9
    4 schema:citation sg:pub.10.1007/s10853-006-0838-5
    5 sg:pub.10.1007/s11661-009-0088-7
    6 sg:pub.10.1007/s11661-012-1114-8
    7 sg:pub.10.1023/a:1004720300774
    8 schema:datePublished 2013-11-19
    9 schema:datePublishedReg 2013-11-19
    10 schema:description In this paper, the use of a microstructure-sensitive fatigue model is put forth for the analysis of discontinuously reinforced aluminum alloy metal matrix composite. The fatigue model was used for a ceramic particle-reinforced aluminum alloy deformed under conditions of fully reversed strain control. Experimental results revealed the aluminum alloy to be strongly influenced by volume fraction of the particulate reinforcement phase under conditions of strain-controlled fatigue. The model safely characterizes the evolution of fatigue damage in this aluminum alloy composite into the distinct stages of crack initiation and crack growth culminating in failure. The model is able to capture the specific influence of particle volume fraction, particle size, and nearest neighbor distance in quantifying fatigue life. The model yields good results for correlation of the predicted results with the experimental test results on the fatigue behavior of the chosen aluminum alloy for two different percentages of the ceramic particle reinforcement. Further, the model illustrates that both particle size and volume fraction are key factors that govern fatigue lifetime. This conclusion is well supported by fractographic observations of the cyclically deformed and failed specimens.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N02d328cc40e34ebdaa11b0779c084c46
    15 N4490ee7c9cf444938c9aa81d81b82339
    16 sg:journal.1042007
    17 schema:keywords Discontinuous Particulate-Reinforced Aluminum Alloy Composite
    18 Particulate-Reinforced Aluminum Alloy Composite
    19 alloy
    20 alloy composites
    21 alloy metal matrix composites
    22 aluminium alloy metal matrix composites
    23 aluminum alloy
    24 aluminum alloy composites
    25 analysis
    26 behavior
    27 ceramic particle reinforcements
    28 ceramic particle-reinforced aluminum alloy
    29 composites
    30 conclusion
    31 conditions
    32 control
    33 correlation
    34 crack initiation
    35 damage
    36 different percentages
    37 distance
    38 distinct stages
    39 evolution
    40 experimental results
    41 experimental test results
    42 factors
    43 failure
    44 fatigue
    45 fatigue behavior
    46 fatigue damage
    47 fatigue life
    48 fatigue lifetime
    49 fatigue model
    50 fraction
    51 fractographic observations
    52 good results
    53 growth
    54 influence
    55 influence of microstructure
    56 initiation
    57 key factor
    58 life
    59 lifetime
    60 matrix composites
    61 metal matrix composites
    62 microstructure
    63 microstructure-sensitive fatigue model
    64 model
    65 nearest neighbor distance
    66 neighbor distance
    67 observations
    68 paper
    69 particle reinforcement
    70 particle size
    71 particle volume fraction
    72 particle-reinforced aluminum alloy
    73 particulate reinforcement phase
    74 percentage
    75 phase
    76 quantifying fatigue life
    77 reinforcement
    78 reinforcement phase
    79 results
    80 size
    81 specific influence
    82 specimens
    83 stage
    84 strain control
    85 strain-controlled fatigue
    86 test results
    87 use
    88 volume fraction
    89 schema:name A Fatigue Model for Discontinuous Particulate-Reinforced Aluminum Alloy Composite: Influence of Microstructure
    90 schema:pagination 65-76
    91 schema:productId Nc425a2dcb4d44a5082e54c4e1cb3dfbd
    92 Nef618bf6407b4d82afd36145f34c1257
    93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006927603
    94 https://doi.org/10.1007/s11665-013-0766-x
    95 schema:sdDatePublished 2021-11-01T18:20
    96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    97 schema:sdPublisher N3da3b281810a4145a438fb681ee691ee
    98 schema:url https://doi.org/10.1007/s11665-013-0766-x
    99 sgo:license sg:explorer/license/
    100 sgo:sdDataset articles
    101 rdf:type schema:ScholarlyArticle
    102 N02d328cc40e34ebdaa11b0779c084c46 schema:volumeNumber 23
    103 rdf:type schema:PublicationVolume
    104 N275084bf050f47948cf1e1b895f32d15 rdf:first sg:person.07662551615.89
    105 rdf:rest N7f3b6a61b5414dfb9caff3581e4e584c
    106 N3da3b281810a4145a438fb681ee691ee schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 N4490ee7c9cf444938c9aa81d81b82339 schema:issueNumber 1
    109 rdf:type schema:PublicationIssue
    110 N487ad9ad098d4bc990849c4376e57934 rdf:first sg:person.010412562231.72
    111 rdf:rest N64a66682abb94100b8bbf96958987e93
    112 N64a66682abb94100b8bbf96958987e93 rdf:first sg:person.015440524245.80
    113 rdf:rest N9455ac98c3e340e6ab54235af653bb73
    114 N66917d60acfe4c90ac9e4cc7562d8eb9 rdf:first sg:person.07463122174.37
    115 rdf:rest N275084bf050f47948cf1e1b895f32d15
    116 N7f3b6a61b5414dfb9caff3581e4e584c rdf:first sg:person.014667314002.10
    117 rdf:rest N487ad9ad098d4bc990849c4376e57934
    118 N9455ac98c3e340e6ab54235af653bb73 rdf:first sg:person.0754504306.42
    119 rdf:rest Ne2d1c63d538a454dbf73a4f4ae1eb609
    120 Nc425a2dcb4d44a5082e54c4e1cb3dfbd schema:name dimensions_id
    121 schema:value pub.1006927603
    122 rdf:type schema:PropertyValue
    123 Ne2d1c63d538a454dbf73a4f4ae1eb609 rdf:first sg:person.013771337723.32
    124 rdf:rest rdf:nil
    125 Nef618bf6407b4d82afd36145f34c1257 schema:name doi
    126 schema:value 10.1007/s11665-013-0766-x
    127 rdf:type schema:PropertyValue
    128 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    129 schema:name Engineering
    130 rdf:type schema:DefinedTerm
    131 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    132 schema:name Materials Engineering
    133 rdf:type schema:DefinedTerm
    134 sg:journal.1042007 schema:issn 1059-9495
    135 1544-1024
    136 schema:name Journal of Materials Engineering and Performance
    137 schema:publisher Springer Nature
    138 rdf:type schema:Periodical
    139 sg:person.010412562231.72 schema:affiliation grid-institutes:grid.265881.0
    140 schema:familyName Manigandan
    141 schema:givenName K.
    142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72
    143 rdf:type schema:Person
    144 sg:person.013771337723.32 schema:affiliation grid-institutes:grid.417553.1
    145 schema:familyName Rushing
    146 schema:givenName T. W.
    147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013771337723.32
    148 rdf:type schema:Person
    149 sg:person.014667314002.10 schema:affiliation grid-institutes:grid.411015.0
    150 schema:familyName Brammer
    151 schema:givenName A. T.
    152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014667314002.10
    153 rdf:type schema:Person
    154 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
    155 schema:familyName Srivatsan
    156 schema:givenName T. S.
    157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
    158 rdf:type schema:Person
    159 sg:person.07463122174.37 schema:affiliation grid-institutes:grid.411015.0
    160 schema:familyName McCullough
    161 schema:givenName R. R.
    162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07463122174.37
    163 rdf:type schema:Person
    164 sg:person.0754504306.42 schema:affiliation grid-institutes:grid.417553.1
    165 schema:familyName Allison
    166 schema:givenName P. G.
    167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0754504306.42
    168 rdf:type schema:Person
    169 sg:person.07662551615.89 schema:affiliation grid-institutes:grid.411015.0
    170 schema:familyName Jordon
    171 schema:givenName J. B.
    172 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07662551615.89
    173 rdf:type schema:Person
    174 sg:pub.10.1007/s10853-006-0838-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022391623
    175 https://doi.org/10.1007/s10853-006-0838-5
    176 rdf:type schema:CreativeWork
    177 sg:pub.10.1007/s11661-009-0088-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043794910
    178 https://doi.org/10.1007/s11661-009-0088-7
    179 rdf:type schema:CreativeWork
    180 sg:pub.10.1007/s11661-012-1114-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015770164
    181 https://doi.org/10.1007/s11661-012-1114-8
    182 rdf:type schema:CreativeWork
    183 sg:pub.10.1023/a:1004720300774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052379133
    184 https://doi.org/10.1023/a:1004720300774
    185 rdf:type schema:CreativeWork
    186 grid-institutes:grid.265881.0 schema:alternateName Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA
    187 schema:name Department of Mechanical Engineering, The University of Akron, 44325-3903, Akron, OH, USA
    188 rdf:type schema:Organization
    189 grid-institutes:grid.411015.0 schema:alternateName Department of Mechanical Engineering, The University of Alabama, 35487, Tuscaloosa, Al, USA
    190 schema:name Department of Mechanical Engineering, The University of Alabama, 35487, Tuscaloosa, Al, USA
    191 rdf:type schema:Organization
    192 grid-institutes:grid.417553.1 schema:alternateName Geotechnical & Structures Laboratory, Engineer Research & Development Center, US Army Corps of Engineers, 39180, Vicksburg, MS, USA
    193 schema:name Geotechnical & Structures Laboratory, Engineer Research & Development Center, US Army Corps of Engineers, 39180, Vicksburg, MS, USA
    194 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...