Mechanical Behavior of Two High Strength Alloy Steels Under Conditions of Cyclic Tension View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-10-25

AUTHORS

T. S. Srivatsan, K. Manigandan, S. Sastry, T. Quick, M. L. Schmidt

ABSTRACT

The results of a recent study aimed at understanding the conjoint influence of load ratio and microstructure on the high cycle fatigue properties and resultant fracture behavior of two high strength alloy steels is presented and discussed. Both the chosen alloy steels, i.e., 300M and Tenax™ 310 have much better strength and ductility properties to offer in comparison with the other competing high strength steels having near similar chemical composition. Test specimens were precision machined from the as-provided stock of each steel. The machined specimens were deformed in both uniaxial tension and cyclic fatigue under conditions of stress control. The test specimens of each alloy steel were cyclically deformed over a range of maximum stress at two different load ratios and the number of cycles to failure recorded. The specific influence of load ratio on cyclic fatigue life is presented and discussed keeping in mind the maximum stress used during cyclic deformation. The fatigue fracture surfaces were examined in a scanning electron microscope to establish the macroscopic mode and to concurrently characterize the intrinsic features on the fracture surface. The conjoint influence of nature of loading, maximum stress, and microstructure on cyclic fatigue life is discussed. More... »

PAGES

198-212

References to SciGraph publications

  • 1976-06. Evaluation of toughness in AISI 4340 alloy steel austenitized at low and high temperatures in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 1987-07. The influence of inclusion spacing and microstructure on the in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11665-013-0752-3

    DOI

    http://dx.doi.org/10.1007/s11665-013-0752-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1004605248


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325, Akron, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.265881.0", 
              "name": [
                "Department of Mechanical Engineering, The University of Akron, 44325, Akron, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Srivatsan", 
            "givenName": "T. S.", 
            "id": "sg:person.015440524245.80", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325, Akron, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.265881.0", 
              "name": [
                "Department of Mechanical Engineering, The University of Akron, 44325, Akron, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Manigandan", 
            "givenName": "K.", 
            "id": "sg:person.010412562231.72", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, The University of Akron, 44325, Akron, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.265881.0", 
              "name": [
                "Department of Mechanical Engineering, The University of Akron, 44325, Akron, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sastry", 
            "givenName": "S.", 
            "id": "sg:person.010255337251.77", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255337251.77"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Geology, The University of Akron, 44325, Akron, OH, USA", 
              "id": "http://www.grid.ac/institutes/grid.265881.0", 
              "name": [
                "Department of Geology, The University of Akron, 44325, Akron, OH, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Quick", 
            "givenName": "T.", 
            "id": "sg:person.016647363633.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647363633.11"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Alloy Development, CARPENTER Technology Corporation, Specialty Alloys Operations, 19601, Reading, PA, USA", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Alloy Development, CARPENTER Technology Corporation, Specialty Alloys Operations, 19601, Reading, PA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Schmidt", 
            "givenName": "M. L.", 
            "id": "sg:person.011105642700.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011105642700.52"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02644080", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003507415", 
              "https://doi.org/10.1007/bf02644080"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02647195", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034864910", 
              "https://doi.org/10.1007/bf02647195"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-10-25", 
        "datePublishedReg": "2013-10-25", 
        "description": "The results of a recent study aimed at understanding the conjoint influence of load ratio and microstructure on the high cycle fatigue properties and resultant fracture behavior of two high strength alloy steels is presented and discussed. Both the chosen alloy steels, i.e., 300M and Tenax\u2122 310 have much better strength and ductility properties to offer in comparison with the other competing high strength steels having near similar chemical composition. Test specimens were precision machined from the as-provided stock of each steel. The machined specimens were deformed in both uniaxial tension and cyclic fatigue under conditions of stress control. The test specimens of each alloy steel were cyclically deformed over a range of maximum stress at two different load ratios and the number of cycles to failure recorded. The specific influence of load ratio on cyclic fatigue life is presented and discussed keeping in mind the maximum stress used during cyclic deformation. The fatigue fracture surfaces were examined in a scanning electron microscope to establish the macroscopic mode and to concurrently characterize the intrinsic features on the fracture surface. The conjoint influence of nature of loading, maximum stress, and microstructure on cyclic fatigue life is discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11665-013-0752-3", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042007", 
            "issn": [
              "1059-9495", 
              "1544-1024"
            ], 
            "name": "Journal of Materials Engineering and Performance", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "23"
          }
        ], 
        "keywords": [
          "high strength alloy steel", 
          "alloy steel", 
          "load ratio", 
          "cyclic fatigue life", 
          "maximum stress", 
          "fatigue life", 
          "fracture surfaces", 
          "high cycle fatigue properties", 
          "resultant fracture behavior", 
          "high strength steel", 
          "cycle fatigue properties", 
          "fatigue fracture surfaces", 
          "different load ratios", 
          "strength steel", 
          "ductility properties", 
          "fatigue properties", 
          "machined specimens", 
          "fracture behavior", 
          "scanning electron microscope", 
          "cyclic deformation", 
          "mechanical behavior", 
          "number of cycles", 
          "conjoint influence", 
          "good strength", 
          "cyclic tension", 
          "steel", 
          "test specimens", 
          "cyclic fatigue", 
          "uniaxial tension", 
          "electron microscope", 
          "stress control", 
          "macroscopic modes", 
          "similar chemical composition", 
          "surface", 
          "stress", 
          "properties", 
          "chemical composition", 
          "deformation", 
          "loading", 
          "influence", 
          "tension", 
          "behavior", 
          "strength", 
          "specimens", 
          "ratio", 
          "microscope", 
          "conditions", 
          "fatigue", 
          "intrinsic features", 
          "mode", 
          "precision", 
          "specific influence", 
          "range", 
          "test", 
          "cycle", 
          "composition", 
          "tenax", 
          "results", 
          "failure", 
          "comparison", 
          "control", 
          "features", 
          "life", 
          "nature", 
          "number", 
          "study", 
          "stocks", 
          "Recent studies", 
          "mind", 
          "strength alloy steels"
        ], 
        "name": "Mechanical Behavior of Two High Strength Alloy Steels Under Conditions of Cyclic Tension", 
        "pagination": "198-212", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1004605248"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11665-013-0752-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11665-013-0752-3", 
          "https://app.dimensions.ai/details/publication/pub.1004605248"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:21", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_612.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11665-013-0752-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-013-0752-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-013-0752-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-013-0752-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-013-0752-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    169 TRIPLES      22 PREDICATES      97 URIs      87 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11665-013-0752-3 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N7d08610caa0f49f58293556c34dae9bc
    4 schema:citation sg:pub.10.1007/bf02644080
    5 sg:pub.10.1007/bf02647195
    6 schema:datePublished 2013-10-25
    7 schema:datePublishedReg 2013-10-25
    8 schema:description The results of a recent study aimed at understanding the conjoint influence of load ratio and microstructure on the high cycle fatigue properties and resultant fracture behavior of two high strength alloy steels is presented and discussed. Both the chosen alloy steels, i.e., 300M and Tenax™ 310 have much better strength and ductility properties to offer in comparison with the other competing high strength steels having near similar chemical composition. Test specimens were precision machined from the as-provided stock of each steel. The machined specimens were deformed in both uniaxial tension and cyclic fatigue under conditions of stress control. The test specimens of each alloy steel were cyclically deformed over a range of maximum stress at two different load ratios and the number of cycles to failure recorded. The specific influence of load ratio on cyclic fatigue life is presented and discussed keeping in mind the maximum stress used during cyclic deformation. The fatigue fracture surfaces were examined in a scanning electron microscope to establish the macroscopic mode and to concurrently characterize the intrinsic features on the fracture surface. The conjoint influence of nature of loading, maximum stress, and microstructure on cyclic fatigue life is discussed.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N18eb17dbfa014841846fc6e68524c764
    13 Nec3e111b257547c899a559955839f31e
    14 sg:journal.1042007
    15 schema:keywords Recent studies
    16 alloy steel
    17 behavior
    18 chemical composition
    19 comparison
    20 composition
    21 conditions
    22 conjoint influence
    23 control
    24 cycle
    25 cycle fatigue properties
    26 cyclic deformation
    27 cyclic fatigue
    28 cyclic fatigue life
    29 cyclic tension
    30 deformation
    31 different load ratios
    32 ductility properties
    33 electron microscope
    34 failure
    35 fatigue
    36 fatigue fracture surfaces
    37 fatigue life
    38 fatigue properties
    39 features
    40 fracture behavior
    41 fracture surfaces
    42 good strength
    43 high cycle fatigue properties
    44 high strength alloy steel
    45 high strength steel
    46 influence
    47 intrinsic features
    48 life
    49 load ratio
    50 loading
    51 machined specimens
    52 macroscopic modes
    53 maximum stress
    54 mechanical behavior
    55 microscope
    56 mind
    57 mode
    58 nature
    59 number
    60 number of cycles
    61 precision
    62 properties
    63 range
    64 ratio
    65 resultant fracture behavior
    66 results
    67 scanning electron microscope
    68 similar chemical composition
    69 specific influence
    70 specimens
    71 steel
    72 stocks
    73 strength
    74 strength alloy steels
    75 strength steel
    76 stress
    77 stress control
    78 study
    79 surface
    80 tenax
    81 tension
    82 test
    83 test specimens
    84 uniaxial tension
    85 schema:name Mechanical Behavior of Two High Strength Alloy Steels Under Conditions of Cyclic Tension
    86 schema:pagination 198-212
    87 schema:productId N1196a28b13a84d36994775cba603bff5
    88 Nfc314050968e46e5a0cbae497b131744
    89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004605248
    90 https://doi.org/10.1007/s11665-013-0752-3
    91 schema:sdDatePublished 2021-11-01T18:21
    92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    93 schema:sdPublisher Nf3213015431647ed9ddd75afc39ae37f
    94 schema:url https://doi.org/10.1007/s11665-013-0752-3
    95 sgo:license sg:explorer/license/
    96 sgo:sdDataset articles
    97 rdf:type schema:ScholarlyArticle
    98 N1196a28b13a84d36994775cba603bff5 schema:name dimensions_id
    99 schema:value pub.1004605248
    100 rdf:type schema:PropertyValue
    101 N18eb17dbfa014841846fc6e68524c764 schema:issueNumber 1
    102 rdf:type schema:PublicationIssue
    103 N7d08610caa0f49f58293556c34dae9bc rdf:first sg:person.015440524245.80
    104 rdf:rest Ndcbe661b973b4cc6978b15ef790ba202
    105 Nb349116c5bf54619aae2510f2fc58a0d rdf:first sg:person.011105642700.52
    106 rdf:rest rdf:nil
    107 Nb493508871c546e081cbbcd6b777538c rdf:first sg:person.016647363633.11
    108 rdf:rest Nb349116c5bf54619aae2510f2fc58a0d
    109 Nb93e1f38342a4f37a5f35ac53d1ee81d rdf:first sg:person.010255337251.77
    110 rdf:rest Nb493508871c546e081cbbcd6b777538c
    111 Ndcbe661b973b4cc6978b15ef790ba202 rdf:first sg:person.010412562231.72
    112 rdf:rest Nb93e1f38342a4f37a5f35ac53d1ee81d
    113 Nec3e111b257547c899a559955839f31e schema:volumeNumber 23
    114 rdf:type schema:PublicationVolume
    115 Nf3213015431647ed9ddd75afc39ae37f schema:name Springer Nature - SN SciGraph project
    116 rdf:type schema:Organization
    117 Nfc314050968e46e5a0cbae497b131744 schema:name doi
    118 schema:value 10.1007/s11665-013-0752-3
    119 rdf:type schema:PropertyValue
    120 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    121 schema:name Engineering
    122 rdf:type schema:DefinedTerm
    123 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    124 schema:name Materials Engineering
    125 rdf:type schema:DefinedTerm
    126 sg:journal.1042007 schema:issn 1059-9495
    127 1544-1024
    128 schema:name Journal of Materials Engineering and Performance
    129 schema:publisher Springer Nature
    130 rdf:type schema:Periodical
    131 sg:person.010255337251.77 schema:affiliation grid-institutes:grid.265881.0
    132 schema:familyName Sastry
    133 schema:givenName S.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255337251.77
    135 rdf:type schema:Person
    136 sg:person.010412562231.72 schema:affiliation grid-institutes:grid.265881.0
    137 schema:familyName Manigandan
    138 schema:givenName K.
    139 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010412562231.72
    140 rdf:type schema:Person
    141 sg:person.011105642700.52 schema:affiliation grid-institutes:None
    142 schema:familyName Schmidt
    143 schema:givenName M. L.
    144 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011105642700.52
    145 rdf:type schema:Person
    146 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
    147 schema:familyName Srivatsan
    148 schema:givenName T. S.
    149 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
    150 rdf:type schema:Person
    151 sg:person.016647363633.11 schema:affiliation grid-institutes:grid.265881.0
    152 schema:familyName Quick
    153 schema:givenName T.
    154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647363633.11
    155 rdf:type schema:Person
    156 sg:pub.10.1007/bf02644080 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003507415
    157 https://doi.org/10.1007/bf02644080
    158 rdf:type schema:CreativeWork
    159 sg:pub.10.1007/bf02647195 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034864910
    160 https://doi.org/10.1007/bf02647195
    161 rdf:type schema:CreativeWork
    162 grid-institutes:None schema:alternateName Alloy Development, CARPENTER Technology Corporation, Specialty Alloys Operations, 19601, Reading, PA, USA
    163 schema:name Alloy Development, CARPENTER Technology Corporation, Specialty Alloys Operations, 19601, Reading, PA, USA
    164 rdf:type schema:Organization
    165 grid-institutes:grid.265881.0 schema:alternateName Department of Geology, The University of Akron, 44325, Akron, OH, USA
    166 Department of Mechanical Engineering, The University of Akron, 44325, Akron, OH, USA
    167 schema:name Department of Geology, The University of Akron, 44325, Akron, OH, USA
    168 Department of Mechanical Engineering, The University of Akron, 44325, Akron, OH, USA
    169 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...