Inverse Thermal Analysis of Heat-Affected Zone in Al2129 and Al2198 Laser Welds View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-01-03

AUTHORS

A. D. Zervaki, G. N. Haidemenopoulos, S. G. Lambrakos

ABSTRACT

Case study analyses of A12139 and Al2198 laser welds are presented. These analyses demonstrate the concept of constructing parameter spaces for prediction of properties within the heat-affected zone (HAZ) of welds using inverse modeling, which are in turn for process control. The construction of these parameter spaces consists of two procedures. One procedure entails calculation of a parameterized set of temperature histories by inverse analysis of the heat deposition occurring during welding. The other procedure entails correlating these temperature histories with a specific physical property of the weld that is measurable. The analyses presented here examines some characteristics of inverse modeling with respect to the prediction of hardness within the HAZ for deep penetration laser welding of the Aluminum alloys A12139 and Al2198. This study further demonstrates the feasibility of constructing a parameter space for the prediction of weld properties using weld cross section measurements that are independent of weld process conditions. More... »

PAGES

1582-1592

References to SciGraph publications

  • 2011-05-18. A Numerical Method for Inverse Thermal Analysis of Steady-State Energy Deposition in Plate Structures in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 2011-05-18. Case-Study Inverse Thermal Analyses of Al2198 Laser Welds in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • 1994-06. Computer simulation of diffusion in multiphase systems in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2011-05-18. Case-Study Inverse Thermal Analyses of Al2139 Laser Welds in JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11665-012-0455-1

    DOI

    http://dx.doi.org/10.1007/s11665-012-0455-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1014952398


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Manufacturing Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, University of Thessaly, 38334, V\u00f3los, Greece", 
              "id": "http://www.grid.ac/institutes/grid.410558.d", 
              "name": [
                "Department of Mechanical Engineering, University of Thessaly, 38334, V\u00f3los, Greece"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zervaki", 
            "givenName": "A. D.", 
            "id": "sg:person.07420163560.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420163560.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, University of Thessaly, 38334, V\u00f3los, Greece", 
              "id": "http://www.grid.ac/institutes/grid.410558.d", 
              "name": [
                "Department of Mechanical Engineering, University of Thessaly, 38334, V\u00f3los, Greece"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haidemenopoulos", 
            "givenName": "G. N.", 
            "id": "sg:person.015521222033.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015521222033.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials Science and Technology Division, Code 6390, Naval Research Laboratory, 20375-5320, Washington, DC, USA", 
              "id": "http://www.grid.ac/institutes/grid.89170.37", 
              "name": [
                "Materials Science and Technology Division, Code 6390, Naval Research Laboratory, 20375-5320, Washington, DC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lambrakos", 
            "givenName": "S. G.", 
            "id": "sg:person.015722475453.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015722475453.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/s11665-011-9968-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028331124", 
              "https://doi.org/10.1007/s11665-011-9968-2"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-011-9967-3", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007970852", 
              "https://doi.org/10.1007/s11665-011-9967-3"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02652288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051246350", 
              "https://doi.org/10.1007/bf02652288"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11665-011-9963-7", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048215292", 
              "https://doi.org/10.1007/s11665-011-9963-7"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2013-01-03", 
        "datePublishedReg": "2013-01-03", 
        "description": "Case study analyses of A12139 and Al2198 laser welds are presented. These analyses demonstrate the concept of constructing parameter spaces for prediction of properties within the heat-affected zone (HAZ) of welds using inverse modeling, which are in turn for process control. The construction of these parameter spaces consists of two procedures. One procedure entails calculation of a parameterized set of temperature histories by inverse analysis of the heat deposition occurring during welding. The other procedure entails correlating these temperature histories with a specific physical property of the weld that is measurable. The analyses presented here examines some characteristics of inverse modeling with respect to the prediction of hardness within the HAZ for deep penetration laser welding of the Aluminum alloys A12139 and Al2198. This study further demonstrates the feasibility of constructing a parameter space for the prediction of weld properties using weld cross section measurements that are independent of weld process conditions.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11665-012-0455-1", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042007", 
            "issn": [
              "1059-9495", 
              "1544-1024"
            ], 
            "name": "Journal of Materials Engineering and Performance", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "22"
          }
        ], 
        "keywords": [
          "heat-affected zone", 
          "laser welds", 
          "temperature history", 
          "deep penetration laser welding", 
          "weld process conditions", 
          "Heat Affected Zone", 
          "inverse thermal analysis", 
          "parameter space", 
          "prediction of hardness", 
          "weld properties", 
          "laser welding", 
          "process conditions", 
          "welds", 
          "heat deposition", 
          "inverse analysis", 
          "process control", 
          "prediction of properties", 
          "specific physical properties", 
          "welding", 
          "thermal analysis", 
          "inverse modeling", 
          "physical properties", 
          "properties", 
          "hardness", 
          "space", 
          "aluminum", 
          "prediction", 
          "zone", 
          "cross section measurements", 
          "deposition", 
          "modeling", 
          "inverse", 
          "section measurements", 
          "feasibility", 
          "measurements", 
          "analysis", 
          "characteristics", 
          "calculations", 
          "procedure", 
          "construction", 
          "conditions", 
          "set", 
          "control", 
          "respect", 
          "concept", 
          "turn", 
          "case study analysis", 
          "study", 
          "study analysis", 
          "history"
        ], 
        "name": "Inverse Thermal Analysis of Heat-Affected Zone in Al2129 and Al2198 Laser Welds", 
        "pagination": "1582-1592", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1014952398"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11665-012-0455-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11665-012-0455-1", 
          "https://app.dimensions.ai/details/publication/pub.1014952398"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:58", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_600.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11665-012-0455-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-012-0455-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-012-0455-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-012-0455-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-012-0455-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    140 TRIPLES      21 PREDICATES      78 URIs      66 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11665-012-0455-1 schema:about anzsrc-for:09
    2 anzsrc-for:0910
    3 schema:author N2d5199378e7d4107bfd31d66f7858466
    4 schema:citation sg:pub.10.1007/bf02652288
    5 sg:pub.10.1007/s11665-011-9963-7
    6 sg:pub.10.1007/s11665-011-9967-3
    7 sg:pub.10.1007/s11665-011-9968-2
    8 schema:datePublished 2013-01-03
    9 schema:datePublishedReg 2013-01-03
    10 schema:description Case study analyses of A12139 and Al2198 laser welds are presented. These analyses demonstrate the concept of constructing parameter spaces for prediction of properties within the heat-affected zone (HAZ) of welds using inverse modeling, which are in turn for process control. The construction of these parameter spaces consists of two procedures. One procedure entails calculation of a parameterized set of temperature histories by inverse analysis of the heat deposition occurring during welding. The other procedure entails correlating these temperature histories with a specific physical property of the weld that is measurable. The analyses presented here examines some characteristics of inverse modeling with respect to the prediction of hardness within the HAZ for deep penetration laser welding of the Aluminum alloys A12139 and Al2198. This study further demonstrates the feasibility of constructing a parameter space for the prediction of weld properties using weld cross section measurements that are independent of weld process conditions.
    11 schema:genre article
    12 schema:isAccessibleForFree false
    13 schema:isPartOf Na3030407c4614763af96171f911931bd
    14 Nf9999b045b6649a59b8ad5c27f10dafe
    15 sg:journal.1042007
    16 schema:keywords Heat Affected Zone
    17 aluminum
    18 analysis
    19 calculations
    20 case study analysis
    21 characteristics
    22 concept
    23 conditions
    24 construction
    25 control
    26 cross section measurements
    27 deep penetration laser welding
    28 deposition
    29 feasibility
    30 hardness
    31 heat deposition
    32 heat-affected zone
    33 history
    34 inverse
    35 inverse analysis
    36 inverse modeling
    37 inverse thermal analysis
    38 laser welding
    39 laser welds
    40 measurements
    41 modeling
    42 parameter space
    43 physical properties
    44 prediction
    45 prediction of hardness
    46 prediction of properties
    47 procedure
    48 process conditions
    49 process control
    50 properties
    51 respect
    52 section measurements
    53 set
    54 space
    55 specific physical properties
    56 study
    57 study analysis
    58 temperature history
    59 thermal analysis
    60 turn
    61 weld process conditions
    62 weld properties
    63 welding
    64 welds
    65 zone
    66 schema:name Inverse Thermal Analysis of Heat-Affected Zone in Al2129 and Al2198 Laser Welds
    67 schema:pagination 1582-1592
    68 schema:productId N3610f2e8c9fa4eb68e2c8bbf5c3a615d
    69 Nf7bba0a08310450d803b8ee053abdd65
    70 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014952398
    71 https://doi.org/10.1007/s11665-012-0455-1
    72 schema:sdDatePublished 2022-11-24T20:58
    73 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    74 schema:sdPublisher N751772099be449d0914b2572d6c3e0c8
    75 schema:url https://doi.org/10.1007/s11665-012-0455-1
    76 sgo:license sg:explorer/license/
    77 sgo:sdDataset articles
    78 rdf:type schema:ScholarlyArticle
    79 N19eec29c077046428f424044ee5a1a4d rdf:first sg:person.015722475453.27
    80 rdf:rest rdf:nil
    81 N2d5199378e7d4107bfd31d66f7858466 rdf:first sg:person.07420163560.19
    82 rdf:rest N2fd9f46d41ef4bb6963d7c04a1802148
    83 N2fd9f46d41ef4bb6963d7c04a1802148 rdf:first sg:person.015521222033.93
    84 rdf:rest N19eec29c077046428f424044ee5a1a4d
    85 N3610f2e8c9fa4eb68e2c8bbf5c3a615d schema:name doi
    86 schema:value 10.1007/s11665-012-0455-1
    87 rdf:type schema:PropertyValue
    88 N751772099be449d0914b2572d6c3e0c8 schema:name Springer Nature - SN SciGraph project
    89 rdf:type schema:Organization
    90 Na3030407c4614763af96171f911931bd schema:volumeNumber 22
    91 rdf:type schema:PublicationVolume
    92 Nf7bba0a08310450d803b8ee053abdd65 schema:name dimensions_id
    93 schema:value pub.1014952398
    94 rdf:type schema:PropertyValue
    95 Nf9999b045b6649a59b8ad5c27f10dafe schema:issueNumber 6
    96 rdf:type schema:PublicationIssue
    97 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    98 schema:name Engineering
    99 rdf:type schema:DefinedTerm
    100 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
    101 schema:name Manufacturing Engineering
    102 rdf:type schema:DefinedTerm
    103 sg:journal.1042007 schema:issn 1059-9495
    104 1544-1024
    105 schema:name Journal of Materials Engineering and Performance
    106 schema:publisher Springer Nature
    107 rdf:type schema:Periodical
    108 sg:person.015521222033.93 schema:affiliation grid-institutes:grid.410558.d
    109 schema:familyName Haidemenopoulos
    110 schema:givenName G. N.
    111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015521222033.93
    112 rdf:type schema:Person
    113 sg:person.015722475453.27 schema:affiliation grid-institutes:grid.89170.37
    114 schema:familyName Lambrakos
    115 schema:givenName S. G.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015722475453.27
    117 rdf:type schema:Person
    118 sg:person.07420163560.19 schema:affiliation grid-institutes:grid.410558.d
    119 schema:familyName Zervaki
    120 schema:givenName A. D.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420163560.19
    122 rdf:type schema:Person
    123 sg:pub.10.1007/bf02652288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051246350
    124 https://doi.org/10.1007/bf02652288
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1007/s11665-011-9963-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048215292
    127 https://doi.org/10.1007/s11665-011-9963-7
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1007/s11665-011-9967-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007970852
    130 https://doi.org/10.1007/s11665-011-9967-3
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1007/s11665-011-9968-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028331124
    133 https://doi.org/10.1007/s11665-011-9968-2
    134 rdf:type schema:CreativeWork
    135 grid-institutes:grid.410558.d schema:alternateName Department of Mechanical Engineering, University of Thessaly, 38334, Vólos, Greece
    136 schema:name Department of Mechanical Engineering, University of Thessaly, 38334, Vólos, Greece
    137 rdf:type schema:Organization
    138 grid-institutes:grid.89170.37 schema:alternateName Materials Science and Technology Division, Code 6390, Naval Research Laboratory, 20375-5320, Washington, DC, USA
    139 schema:name Materials Science and Technology Division, Code 6390, Naval Research Laboratory, 20375-5320, Washington, DC, USA
    140 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...