THz Absorption Spectra of Fe Water Complexes Interacting with O3 Calculated by Density Functional Theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2013-05

AUTHORS

L. Huang, S. G. Lambrakos, A. Shabaev, L. Massa, C. Yapijakis

ABSTRACT

The need for better monitoring of water quality and levels of water contamination implies a need for determining the dielectric response properties of water contaminants with respect to electromagnetic wave excitation. In addition to monitoring contaminants, there is an associated need for monitoring chemical processes that are for deactivation or assistance in the removal of water contaminants. Iron and manganese are two naturally occurring water contaminants, where iron is in general at much higher concentrations. Correspondingly, a process that is highly effective for assisting filtration of water contaminants, including iron and manganese, is the addition in solution of Ozone, i.e., the preozonation process. The present study uses density functional theory (DFT) for the calculation of ground-state resonance structure associated with Fe water complexes interacting with Ozone in solution. The calculations presented are for excitation by electromagnetic waves at frequencies within the THz range. Dielectric response functions can provide for different types of analyses concerning water contaminants. In particular, dielectric response functions can provide quantitative initial estimates of spectral response features for subsequent adjustment with respect to additional information such as laboratory measurements and other types of theory-based calculations. In addition, with respect to qualitative analysis, DFT-calculated absorption spectra provide for molecular level interpretation of response structure. The DFT software GAUSSIAN was used for the calculations of ground-state resonance structure presented in this article. More... »

PAGES

1242-1256

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-012-0430-x

DOI

http://dx.doi.org/10.1007/s11665-012-0430-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044466436


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0907", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Environmental Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "United States Naval Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Naval Research Laboratory, 20375, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "L.", 
        "id": "sg:person.01113653767.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113653767.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Naval Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Naval Research Laboratory, 20375, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lambrakos", 
        "givenName": "S. G.", 
        "id": "sg:person.015722475453.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015722475453.27"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "George Mason University", 
          "id": "https://www.grid.ac/institutes/grid.22448.38", 
          "name": [
            "George Mason University, 22030, Fairfax, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shabaev", 
        "givenName": "A.", 
        "id": "sg:person.0653625653.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653625653.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Hunter College", 
          "id": "https://www.grid.ac/institutes/grid.257167.0", 
          "name": [
            "Hunter College, CUNY New York, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Massa", 
        "givenName": "L.", 
        "id": "sg:person.0730764561.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730764561.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Cooper Union", 
          "id": "https://www.grid.ac/institutes/grid.254672.0", 
          "name": [
            "Albert Nerkin School of Engineering, The Cooper Union, New York, NY, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yapijakis", 
        "givenName": "C.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.cplett.2004.10.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010068274"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-011-9857-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010383766", 
          "https://doi.org/10.1007/s11665-011-9857-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2008.11.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014507277"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cphc.200600456", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019862873"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.540040303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025841288"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-009-2803-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026967411", 
          "https://doi.org/10.1007/s00216-009-2803-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-009-2803-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026967411", 
          "https://doi.org/10.1007/s00216-009-2803-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00216-009-2803-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026967411", 
          "https://doi.org/10.1007/s00216-009-2803-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cplett.2006.12.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032686267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-011-0020-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036696178", 
          "https://doi.org/10.1007/s11665-011-0020-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.464913", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042899913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja044809d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046251777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja044809d", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046251777"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0009-2614(89)87234-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053468659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja970915m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055867419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja970915m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055867419"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0554285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056063230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0554285", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056063230"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0732256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056072269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0732256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056072269"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp972062q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056125423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp972062q", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056125423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1710046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057778868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.438980", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058017009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.447079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058025099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.136.b864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.136.b864", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060429813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.140.a1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060431417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.140.a1133", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060431417"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.61.689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/revmodphys.61.689", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060839183"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1364/oe.15.012060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065186078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/10-06119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065265594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1366/10-06119", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1065265594"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/cbo9780511805769", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098691822"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2013-05", 
    "datePublishedReg": "2013-05-01", 
    "description": "The need for better monitoring of water quality and levels of water contamination implies a need for determining the dielectric response properties of water contaminants with respect to electromagnetic wave excitation. In addition to monitoring contaminants, there is an associated need for monitoring chemical processes that are for deactivation or assistance in the removal of water contaminants. Iron and manganese are two naturally occurring water contaminants, where iron is in general at much higher concentrations. Correspondingly, a process that is highly effective for assisting filtration of water contaminants, including iron and manganese, is the addition in solution of Ozone, i.e., the preozonation process. The present study uses density functional theory (DFT) for the calculation of ground-state resonance structure associated with Fe water complexes interacting with Ozone in solution. The calculations presented are for excitation by electromagnetic waves at frequencies within the THz range. Dielectric response functions can provide for different types of analyses concerning water contaminants. In particular, dielectric response functions can provide quantitative initial estimates of spectral response features for subsequent adjustment with respect to additional information such as laboratory measurements and other types of theory-based calculations. In addition, with respect to qualitative analysis, DFT-calculated absorption spectra provide for molecular level interpretation of response structure. The DFT software GAUSSIAN was used for the calculations of ground-state resonance structure presented in this article.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11665-012-0430-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "name": "THz Absorption Spectra of Fe Water Complexes Interacting with O3 Calculated by Density Functional Theory", 
    "pagination": "1242-1256", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d3cf68534d425e3bf4f39a05b889d379780ecb1357575e2d9d122601d56b2e74"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-012-0430-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044466436"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-012-0430-x", 
      "https://app.dimensions.ai/details/publication/pub.1044466436"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T13:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11665-012-0430-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-012-0430-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-012-0430-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-012-0430-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-012-0430-x'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      21 PREDICATES      51 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-012-0430-x schema:about anzsrc-for:09
2 anzsrc-for:0907
3 schema:author Ncfcd2d733c74400c9fae1e26017aee0a
4 schema:citation sg:pub.10.1007/s00216-009-2803-z
5 sg:pub.10.1007/s11665-011-0020-3
6 sg:pub.10.1007/s11665-011-9857-8
7 https://doi.org/10.1002/cphc.200600456
8 https://doi.org/10.1002/jcc.540040303
9 https://doi.org/10.1016/0009-2614(89)87234-3
10 https://doi.org/10.1016/j.cplett.2004.10.117
11 https://doi.org/10.1016/j.cplett.2006.12.015
12 https://doi.org/10.1016/j.cplett.2008.11.052
13 https://doi.org/10.1017/cbo9780511805769
14 https://doi.org/10.1021/ja044809d
15 https://doi.org/10.1021/ja970915m
16 https://doi.org/10.1021/jp0554285
17 https://doi.org/10.1021/jp0732256
18 https://doi.org/10.1021/jp972062q
19 https://doi.org/10.1063/1.1710046
20 https://doi.org/10.1063/1.438980
21 https://doi.org/10.1063/1.447079
22 https://doi.org/10.1063/1.464913
23 https://doi.org/10.1103/physrev.136.b864
24 https://doi.org/10.1103/physrev.140.a1133
25 https://doi.org/10.1103/revmodphys.61.689
26 https://doi.org/10.1364/oe.15.012060
27 https://doi.org/10.1366/10-06119
28 schema:datePublished 2013-05
29 schema:datePublishedReg 2013-05-01
30 schema:description The need for better monitoring of water quality and levels of water contamination implies a need for determining the dielectric response properties of water contaminants with respect to electromagnetic wave excitation. In addition to monitoring contaminants, there is an associated need for monitoring chemical processes that are for deactivation or assistance in the removal of water contaminants. Iron and manganese are two naturally occurring water contaminants, where iron is in general at much higher concentrations. Correspondingly, a process that is highly effective for assisting filtration of water contaminants, including iron and manganese, is the addition in solution of Ozone, i.e., the preozonation process. The present study uses density functional theory (DFT) for the calculation of ground-state resonance structure associated with Fe water complexes interacting with Ozone in solution. The calculations presented are for excitation by electromagnetic waves at frequencies within the THz range. Dielectric response functions can provide for different types of analyses concerning water contaminants. In particular, dielectric response functions can provide quantitative initial estimates of spectral response features for subsequent adjustment with respect to additional information such as laboratory measurements and other types of theory-based calculations. In addition, with respect to qualitative analysis, DFT-calculated absorption spectra provide for molecular level interpretation of response structure. The DFT software GAUSSIAN was used for the calculations of ground-state resonance structure presented in this article.
31 schema:genre research_article
32 schema:inLanguage en
33 schema:isAccessibleForFree false
34 schema:isPartOf N1786a9306cda4e409cc920f120eafd11
35 N5ab7db45f298493ebf4636c038f81c36
36 sg:journal.1042007
37 schema:name THz Absorption Spectra of Fe Water Complexes Interacting with O3 Calculated by Density Functional Theory
38 schema:pagination 1242-1256
39 schema:productId N1de2504240ac45e1a198dbc197e56767
40 N515bc903cfed444b8b86c1a207355ea1
41 Nd9547b1851a74f54a0654ff775d54fb0
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044466436
43 https://doi.org/10.1007/s11665-012-0430-x
44 schema:sdDatePublished 2019-04-10T13:20
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N1ff78fa728a84e40a54fb95a58ec1f53
47 schema:url http://link.springer.com/10.1007%2Fs11665-012-0430-x
48 sgo:license sg:explorer/license/
49 sgo:sdDataset articles
50 rdf:type schema:ScholarlyArticle
51 N1786a9306cda4e409cc920f120eafd11 schema:volumeNumber 22
52 rdf:type schema:PublicationVolume
53 N1de2504240ac45e1a198dbc197e56767 schema:name readcube_id
54 schema:value d3cf68534d425e3bf4f39a05b889d379780ecb1357575e2d9d122601d56b2e74
55 rdf:type schema:PropertyValue
56 N1ff78fa728a84e40a54fb95a58ec1f53 schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 N515bc903cfed444b8b86c1a207355ea1 schema:name dimensions_id
59 schema:value pub.1044466436
60 rdf:type schema:PropertyValue
61 N5ab7db45f298493ebf4636c038f81c36 schema:issueNumber 5
62 rdf:type schema:PublicationIssue
63 N9d4bf0dbd34d4785acb55a8961e41585 rdf:first sg:person.0653625653.34
64 rdf:rest Nc1bff21e0da041749e8f0ec1ce16ecf9
65 Nb0a54b71e15f4f278aac37f0da4eddcc rdf:first Nebace8660fd843059797af1be18e79bf
66 rdf:rest rdf:nil
67 Nc1bff21e0da041749e8f0ec1ce16ecf9 rdf:first sg:person.0730764561.08
68 rdf:rest Nb0a54b71e15f4f278aac37f0da4eddcc
69 Ncef8a0bf277845688614464746d29e3c rdf:first sg:person.015722475453.27
70 rdf:rest N9d4bf0dbd34d4785acb55a8961e41585
71 Ncfcd2d733c74400c9fae1e26017aee0a rdf:first sg:person.01113653767.44
72 rdf:rest Ncef8a0bf277845688614464746d29e3c
73 Nd9547b1851a74f54a0654ff775d54fb0 schema:name doi
74 schema:value 10.1007/s11665-012-0430-x
75 rdf:type schema:PropertyValue
76 Nebace8660fd843059797af1be18e79bf schema:affiliation https://www.grid.ac/institutes/grid.254672.0
77 schema:familyName Yapijakis
78 schema:givenName C.
79 rdf:type schema:Person
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0907 schema:inDefinedTermSet anzsrc-for:
84 schema:name Environmental Engineering
85 rdf:type schema:DefinedTerm
86 sg:journal.1042007 schema:issn 1059-9495
87 1544-1024
88 schema:name Journal of Materials Engineering and Performance
89 rdf:type schema:Periodical
90 sg:person.01113653767.44 schema:affiliation https://www.grid.ac/institutes/grid.89170.37
91 schema:familyName Huang
92 schema:givenName L.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01113653767.44
94 rdf:type schema:Person
95 sg:person.015722475453.27 schema:affiliation https://www.grid.ac/institutes/grid.89170.37
96 schema:familyName Lambrakos
97 schema:givenName S. G.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015722475453.27
99 rdf:type schema:Person
100 sg:person.0653625653.34 schema:affiliation https://www.grid.ac/institutes/grid.22448.38
101 schema:familyName Shabaev
102 schema:givenName A.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0653625653.34
104 rdf:type schema:Person
105 sg:person.0730764561.08 schema:affiliation https://www.grid.ac/institutes/grid.257167.0
106 schema:familyName Massa
107 schema:givenName L.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0730764561.08
109 rdf:type schema:Person
110 sg:pub.10.1007/s00216-009-2803-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1026967411
111 https://doi.org/10.1007/s00216-009-2803-z
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s11665-011-0020-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036696178
114 https://doi.org/10.1007/s11665-011-0020-3
115 rdf:type schema:CreativeWork
116 sg:pub.10.1007/s11665-011-9857-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010383766
117 https://doi.org/10.1007/s11665-011-9857-8
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1002/cphc.200600456 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019862873
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1002/jcc.540040303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025841288
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/0009-2614(89)87234-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053468659
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.cplett.2004.10.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010068274
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.cplett.2006.12.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032686267
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.cplett.2008.11.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014507277
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1017/cbo9780511805769 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098691822
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1021/ja044809d schema:sameAs https://app.dimensions.ai/details/publication/pub.1046251777
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1021/ja970915m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055867419
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1021/jp0554285 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056063230
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1021/jp0732256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056072269
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1021/jp972062q schema:sameAs https://app.dimensions.ai/details/publication/pub.1056125423
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.1710046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057778868
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1063/1.438980 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058017009
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1063/1.447079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058025099
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1063/1.464913 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042899913
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrev.136.b864 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060429813
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrev.140.a1133 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060431417
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/revmodphys.61.689 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060839183
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1364/oe.15.012060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065186078
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1366/10-06119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1065265594
160 rdf:type schema:CreativeWork
161 https://www.grid.ac/institutes/grid.22448.38 schema:alternateName George Mason University
162 schema:name George Mason University, 22030, Fairfax, VA, USA
163 rdf:type schema:Organization
164 https://www.grid.ac/institutes/grid.254672.0 schema:alternateName Cooper Union
165 schema:name Albert Nerkin School of Engineering, The Cooper Union, New York, NY, USA
166 rdf:type schema:Organization
167 https://www.grid.ac/institutes/grid.257167.0 schema:alternateName Hunter College
168 schema:name Hunter College, CUNY New York, New York, NY, USA
169 rdf:type schema:Organization
170 https://www.grid.ac/institutes/grid.89170.37 schema:alternateName United States Naval Research Laboratory
171 schema:name Naval Research Laboratory, 20375, Washington, DC, USA
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...