Mechanical Behavior of a Magnesium Alloy Nanocomposite Under Conditions of Static Tension and Dynamic Fatigue View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-07-13

AUTHORS

T. S. Srivatsan, C. Godbole, T. Quick, M. Paramsothy, M. Gupta

ABSTRACT

In this paper, the intrinsic influence of nano-alumina particulate (Al2O3p) reinforcements on microstructure, microhardness, tensile properties, tensile fracture, cyclic stress-controlled fatigue, and final fracture behavior of a magnesium alloy is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced composite counterpart (AZ31/1.5 vol.% Al2O3) were manufactured by solidification processing followed by hot extrusion. The elastic modulus, yield strength, and tensile strength of the nanoparticle-reinforced magnesium alloy were noticeably higher than the unreinforced counterpart. The ductility, quantified by elongation-to-failure, of the composite was observably lower than the unreinforced monolithic counterpart (AZ31). The nanoparticle-reinforced composite revealed improved cyclic fatigue resistance over the entire range of maximum stress at both the tested load ratios. Under conditions of fully reversed loading (R = −1) both materials showed observable degradation in behavior quantified in terms of cyclic fatigue life. The conjoint influence of reinforcement, processing, intrinsic microstructural features and loading condition on final fracture behavior is presented and discussed. More... »

PAGES

439-453

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-012-0276-2

DOI

http://dx.doi.org/10.1007/s11665-012-0276-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044656187


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 443250-3903, Akron, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 443250-3903, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivatsan", 
        "givenName": "T. S.", 
        "id": "sg:person.015440524245.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 443250-3903, Akron, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 443250-3903, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Godbole", 
        "givenName": "C.", 
        "id": "sg:person.07617125371.09", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07617125371.09"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Geology, The University of Akron, 443250-3903, Akron, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Geology, The University of Akron, 443250-3903, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Quick", 
        "givenName": "T.", 
        "id": "sg:person.016647363633.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647363633.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, National University of Singapore, 9, Engineering Drive 1, 117-576, Singapore, Singapore", 
          "id": "http://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Mechanical Engineering, National University of Singapore, 9, Engineering Drive 1, 117-576, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Paramsothy", 
        "givenName": "M.", 
        "id": "sg:person.016271165327.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016271165327.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, National University of Singapore, 9, Engineering Drive 1, 117-576, Singapore, Singapore", 
          "id": "http://www.grid.ac/institutes/grid.4280.e", 
          "name": [
            "Department of Mechanical Engineering, National University of Singapore, 9, Engineering Drive 1, 117-576, Singapore, Singapore"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gupta", 
        "givenName": "M.", 
        "id": "sg:person.011617427370.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011617427370.37"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:jmsc.0000043583.47148.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014123694", 
          "https://doi.org/10.1023/b:jmsc.0000043583.47148.31"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1361/105994999770346792", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007196117", 
          "https://doi.org/10.1361/105994999770346792"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2012-07-13", 
    "datePublishedReg": "2012-07-13", 
    "description": "In this paper, the intrinsic influence of nano-alumina particulate (Al2O3p) reinforcements on microstructure, microhardness, tensile properties, tensile fracture, cyclic stress-controlled fatigue, and final fracture behavior of a magnesium alloy is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced composite counterpart (AZ31/1.5\u00a0vol.% Al2O3) were manufactured by solidification processing followed by hot extrusion. The elastic modulus, yield strength, and tensile strength of the nanoparticle-reinforced magnesium alloy were noticeably higher than the unreinforced counterpart. The ductility, quantified by elongation-to-failure, of the composite was observably lower than the unreinforced monolithic counterpart (AZ31). The nanoparticle-reinforced composite revealed improved cyclic fatigue resistance over the entire range of maximum stress at both the tested load ratios. Under conditions of fully reversed loading (R\u00a0=\u00a0\u22121) both materials showed observable degradation in behavior quantified in terms of cyclic fatigue life. The conjoint influence of reinforcement, processing, intrinsic microstructural features and loading condition on final fracture behavior is presented and discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11665-012-0276-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "22"
      }
    ], 
    "keywords": [
      "final fracture behavior", 
      "magnesium alloy", 
      "fracture behavior", 
      "nanoparticle-reinforced composites", 
      "unreinforced magnesium alloy", 
      "unreinforced monolithic counterpart", 
      "magnesium alloy nanocomposites", 
      "intrinsic microstructural features", 
      "stress-controlled fatigue", 
      "cyclic fatigue life", 
      "particulate reinforcement", 
      "composite counterparts", 
      "hot extrusion", 
      "unreinforced counterpart", 
      "solidification processing", 
      "fatigue life", 
      "reversed loading", 
      "yield strength", 
      "dynamic fatigue", 
      "monolithic counterparts", 
      "alloy nanocomposites", 
      "mechanical behavior", 
      "load ratio", 
      "tensile properties", 
      "tensile strength", 
      "microstructural features", 
      "loading conditions", 
      "maximum stress", 
      "tensile fracture", 
      "fatigue resistance", 
      "static tension", 
      "elastic modulus", 
      "alloy", 
      "observable degradation", 
      "composites", 
      "cyclic fatigue resistance", 
      "conjoint influence", 
      "reinforcement", 
      "ductility", 
      "strength", 
      "microhardness", 
      "microstructure", 
      "fatigue", 
      "nanocomposites", 
      "entire range", 
      "modulus", 
      "loading", 
      "behavior", 
      "processing", 
      "extrusion", 
      "conditions", 
      "materials", 
      "influence", 
      "intrinsic influence", 
      "elongation", 
      "properties", 
      "fractures", 
      "stress", 
      "degradation", 
      "resistance", 
      "tension", 
      "ratio", 
      "range", 
      "counterparts", 
      "failure", 
      "terms", 
      "features", 
      "life", 
      "paper", 
      "nano-alumina particulate (Al2O3p) reinforcements", 
      "cyclic stress-controlled fatigue", 
      "nanoparticle-reinforced magnesium alloy", 
      "improved cyclic fatigue resistance"
    ], 
    "name": "Mechanical Behavior of a Magnesium Alloy Nanocomposite Under Conditions of Static Tension and Dynamic Fatigue", 
    "pagination": "439-453", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044656187"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-012-0276-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-012-0276-2", 
      "https://app.dimensions.ai/details/publication/pub.1044656187"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_576.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11665-012-0276-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-012-0276-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-012-0276-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-012-0276-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-012-0276-2'


 

This table displays all metadata directly associated to this object as RDF triples.

172 TRIPLES      22 PREDICATES      100 URIs      90 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-012-0276-2 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N21108aaa736d4d2197ae60c9e980b907
4 schema:citation sg:pub.10.1023/b:jmsc.0000043583.47148.31
5 sg:pub.10.1361/105994999770346792
6 schema:datePublished 2012-07-13
7 schema:datePublishedReg 2012-07-13
8 schema:description In this paper, the intrinsic influence of nano-alumina particulate (Al2O3p) reinforcements on microstructure, microhardness, tensile properties, tensile fracture, cyclic stress-controlled fatigue, and final fracture behavior of a magnesium alloy is presented and discussed. The unreinforced magnesium alloy (AZ31) and the reinforced composite counterpart (AZ31/1.5 vol.% Al2O3) were manufactured by solidification processing followed by hot extrusion. The elastic modulus, yield strength, and tensile strength of the nanoparticle-reinforced magnesium alloy were noticeably higher than the unreinforced counterpart. The ductility, quantified by elongation-to-failure, of the composite was observably lower than the unreinforced monolithic counterpart (AZ31). The nanoparticle-reinforced composite revealed improved cyclic fatigue resistance over the entire range of maximum stress at both the tested load ratios. Under conditions of fully reversed loading (R = −1) both materials showed observable degradation in behavior quantified in terms of cyclic fatigue life. The conjoint influence of reinforcement, processing, intrinsic microstructural features and loading condition on final fracture behavior is presented and discussed.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N749379e0894e4932a87af1c87c78eca8
13 Nd7ff18c3f0e841c88e0f09c63a91b2d7
14 sg:journal.1042007
15 schema:keywords alloy
16 alloy nanocomposites
17 behavior
18 composite counterparts
19 composites
20 conditions
21 conjoint influence
22 counterparts
23 cyclic fatigue life
24 cyclic fatigue resistance
25 cyclic stress-controlled fatigue
26 degradation
27 ductility
28 dynamic fatigue
29 elastic modulus
30 elongation
31 entire range
32 extrusion
33 failure
34 fatigue
35 fatigue life
36 fatigue resistance
37 features
38 final fracture behavior
39 fracture behavior
40 fractures
41 hot extrusion
42 improved cyclic fatigue resistance
43 influence
44 intrinsic influence
45 intrinsic microstructural features
46 life
47 load ratio
48 loading
49 loading conditions
50 magnesium alloy
51 magnesium alloy nanocomposites
52 materials
53 maximum stress
54 mechanical behavior
55 microhardness
56 microstructural features
57 microstructure
58 modulus
59 monolithic counterparts
60 nano-alumina particulate (Al2O3p) reinforcements
61 nanocomposites
62 nanoparticle-reinforced composites
63 nanoparticle-reinforced magnesium alloy
64 observable degradation
65 paper
66 particulate reinforcement
67 processing
68 properties
69 range
70 ratio
71 reinforcement
72 resistance
73 reversed loading
74 solidification processing
75 static tension
76 strength
77 stress
78 stress-controlled fatigue
79 tensile fracture
80 tensile properties
81 tensile strength
82 tension
83 terms
84 unreinforced counterpart
85 unreinforced magnesium alloy
86 unreinforced monolithic counterpart
87 yield strength
88 schema:name Mechanical Behavior of a Magnesium Alloy Nanocomposite Under Conditions of Static Tension and Dynamic Fatigue
89 schema:pagination 439-453
90 schema:productId N4ff89ed4f9814051a47101dc5865ff51
91 Nf12c587c0a74469d9e37bf9308abb7a1
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044656187
93 https://doi.org/10.1007/s11665-012-0276-2
94 schema:sdDatePublished 2021-11-01T18:17
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N283adc97be9043b398432bae6b19dfb9
97 schema:url https://doi.org/10.1007/s11665-012-0276-2
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N01cdf596f62546d1a31c1686aa3913d0 rdf:first sg:person.07617125371.09
102 rdf:rest Nb1a87343f5d44accb2d2eeca0e980d08
103 N21108aaa736d4d2197ae60c9e980b907 rdf:first sg:person.015440524245.80
104 rdf:rest N01cdf596f62546d1a31c1686aa3913d0
105 N283adc97be9043b398432bae6b19dfb9 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N4ff89ed4f9814051a47101dc5865ff51 schema:name doi
108 schema:value 10.1007/s11665-012-0276-2
109 rdf:type schema:PropertyValue
110 N67ebc9616b064855a3d2f8f751cecac5 rdf:first sg:person.016271165327.88
111 rdf:rest N8464fdd8298c463ca43c7cf461d5eb10
112 N749379e0894e4932a87af1c87c78eca8 schema:issueNumber 2
113 rdf:type schema:PublicationIssue
114 N8464fdd8298c463ca43c7cf461d5eb10 rdf:first sg:person.011617427370.37
115 rdf:rest rdf:nil
116 Nb1a87343f5d44accb2d2eeca0e980d08 rdf:first sg:person.016647363633.11
117 rdf:rest N67ebc9616b064855a3d2f8f751cecac5
118 Nd7ff18c3f0e841c88e0f09c63a91b2d7 schema:volumeNumber 22
119 rdf:type schema:PublicationVolume
120 Nf12c587c0a74469d9e37bf9308abb7a1 schema:name dimensions_id
121 schema:value pub.1044656187
122 rdf:type schema:PropertyValue
123 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
124 schema:name Engineering
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
127 schema:name Materials Engineering
128 rdf:type schema:DefinedTerm
129 sg:journal.1042007 schema:issn 1059-9495
130 1544-1024
131 schema:name Journal of Materials Engineering and Performance
132 schema:publisher Springer Nature
133 rdf:type schema:Periodical
134 sg:person.011617427370.37 schema:affiliation grid-institutes:grid.4280.e
135 schema:familyName Gupta
136 schema:givenName M.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011617427370.37
138 rdf:type schema:Person
139 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
140 schema:familyName Srivatsan
141 schema:givenName T. S.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
143 rdf:type schema:Person
144 sg:person.016271165327.88 schema:affiliation grid-institutes:grid.4280.e
145 schema:familyName Paramsothy
146 schema:givenName M.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016271165327.88
148 rdf:type schema:Person
149 sg:person.016647363633.11 schema:affiliation grid-institutes:grid.265881.0
150 schema:familyName Quick
151 schema:givenName T.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016647363633.11
153 rdf:type schema:Person
154 sg:person.07617125371.09 schema:affiliation grid-institutes:grid.265881.0
155 schema:familyName Godbole
156 schema:givenName C.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07617125371.09
158 rdf:type schema:Person
159 sg:pub.10.1023/b:jmsc.0000043583.47148.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014123694
160 https://doi.org/10.1023/b:jmsc.0000043583.47148.31
161 rdf:type schema:CreativeWork
162 sg:pub.10.1361/105994999770346792 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007196117
163 https://doi.org/10.1361/105994999770346792
164 rdf:type schema:CreativeWork
165 grid-institutes:grid.265881.0 schema:alternateName Department of Geology, The University of Akron, 443250-3903, Akron, OH, USA
166 Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 443250-3903, Akron, OH, USA
167 schema:name Department of Geology, The University of Akron, 443250-3903, Akron, OH, USA
168 Division of Materials Science and Engineering, Department of Mechanical Engineering, The University of Akron, 443250-3903, Akron, OH, USA
169 rdf:type schema:Organization
170 grid-institutes:grid.4280.e schema:alternateName Department of Mechanical Engineering, National University of Singapore, 9, Engineering Drive 1, 117-576, Singapore, Singapore
171 schema:name Department of Mechanical Engineering, National University of Singapore, 9, Engineering Drive 1, 117-576, Singapore, Singapore
172 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...