Case-Study Inverse Thermal Analyses of Al2198 Laser Welds View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-05-18

AUTHORS

A. D. Zervaki, G. N. Haidemenopoulos, D. P. Vriami, S. G. Lambrakos

ABSTRACT

In this article, case-study inverse thermal analyses of Al2198 laser welds are presented. These analyses employ a numerical methodology, that is, in terms of analytic and numerical basis functions for inverse thermal analysis of steady-state energy deposition in plate structures. The results of the case studies presented provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations and their associated software implementations. In addition, these weld temperature histories can be used for construction of numerical basis functions that can be adopted for inverse analysis of welds corresponding to other process parameters or welding processes whose process conditions are within similar regimes. More... »

PAGES

471-480

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-011-9967-3

DOI

http://dx.doi.org/10.1007/s11665-011-9967-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007970852


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Manufacturing Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece", 
          "id": "http://www.grid.ac/institutes/grid.410558.d", 
          "name": [
            "Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zervaki", 
        "givenName": "A. D.", 
        "id": "sg:person.07420163560.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420163560.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece", 
          "id": "http://www.grid.ac/institutes/grid.410558.d", 
          "name": [
            "Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Haidemenopoulos", 
        "givenName": "G. N.", 
        "id": "sg:person.015521222033.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015521222033.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece", 
          "id": "http://www.grid.ac/institutes/grid.410558.d", 
          "name": [
            "Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vriami", 
        "givenName": "D. P.", 
        "id": "sg:person.012344701671.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012344701671.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Center for Computational Materials, Code 6390, Materials Science and Technology Division, Naval Research Laboratory, Washington, DC, USA", 
          "id": "http://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Center for Computational Materials, Code 6390, Materials Science and Technology Division, Naval Research Laboratory, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lambrakos", 
        "givenName": "S. G.", 
        "id": "sg:person.015722475453.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015722475453.27"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-05-18", 
    "datePublishedReg": "2011-05-18", 
    "description": "In this article, case-study inverse thermal analyses of Al2198 laser welds are presented. These analyses employ a numerical methodology, that is, in terms of analytic and numerical basis functions for inverse thermal analysis of steady-state energy deposition in plate structures. The results of the case studies presented provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations and their associated software implementations. In addition, these weld temperature histories can be used for construction of numerical basis functions that can be adopted for inverse analysis of welds corresponding to other process parameters or welding processes whose process conditions are within similar regimes.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11665-011-9967-3", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "21"
      }
    ], 
    "keywords": [
      "inverse thermal analysis", 
      "Case study inverse thermal analyses", 
      "weld temperature histories", 
      "laser welds", 
      "thermal analysis", 
      "temperature history", 
      "steady-state energy deposition", 
      "solid-state phase transformation", 
      "welding process", 
      "process parameters", 
      "numerical methodology", 
      "plate structures", 
      "process conditions", 
      "inverse analysis", 
      "welds", 
      "phase transformation", 
      "energy deposition", 
      "basis functions", 
      "computational procedure", 
      "numerical basis functions", 
      "input data", 
      "parametric representation", 
      "similar regimes", 
      "deposition", 
      "software implementation", 
      "case study", 
      "parameters", 
      "prediction", 
      "analysis", 
      "structure", 
      "process", 
      "regime", 
      "construction", 
      "conditions", 
      "methodology", 
      "implementation", 
      "results", 
      "addition", 
      "terms", 
      "transformation", 
      "function", 
      "procedure", 
      "types", 
      "data", 
      "study", 
      "representation", 
      "article", 
      "history"
    ], 
    "name": "Case-Study Inverse Thermal Analyses of Al2198 Laser Welds", 
    "pagination": "471-480", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007970852"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-011-9967-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-011-9967-3", 
      "https://app.dimensions.ai/details/publication/pub.1007970852"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-11-24T20:56", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_535.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11665-011-9967-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-011-9967-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-011-9967-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-011-9967-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-011-9967-3'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      20 PREDICATES      71 URIs      63 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-011-9967-3 schema:about anzsrc-for:09
2 anzsrc-for:0910
3 schema:author N82a7bf66dae9434ea3dc898123460c86
4 schema:datePublished 2011-05-18
5 schema:datePublishedReg 2011-05-18
6 schema:description In this article, case-study inverse thermal analyses of Al2198 laser welds are presented. These analyses employ a numerical methodology, that is, in terms of analytic and numerical basis functions for inverse thermal analysis of steady-state energy deposition in plate structures. The results of the case studies presented provide parametric representations of weld temperature histories that can be adopted as input data to various types of computational procedures, such as those for prediction of solid-state phase transformations and their associated software implementations. In addition, these weld temperature histories can be used for construction of numerical basis functions that can be adopted for inverse analysis of welds corresponding to other process parameters or welding processes whose process conditions are within similar regimes.
7 schema:genre article
8 schema:isAccessibleForFree false
9 schema:isPartOf N1f87701196e944fab6f321e114937caf
10 N74597ec7decc4d969463fd7c3d1897f2
11 sg:journal.1042007
12 schema:keywords Case study inverse thermal analyses
13 addition
14 analysis
15 article
16 basis functions
17 case study
18 computational procedure
19 conditions
20 construction
21 data
22 deposition
23 energy deposition
24 function
25 history
26 implementation
27 input data
28 inverse analysis
29 inverse thermal analysis
30 laser welds
31 methodology
32 numerical basis functions
33 numerical methodology
34 parameters
35 parametric representation
36 phase transformation
37 plate structures
38 prediction
39 procedure
40 process
41 process conditions
42 process parameters
43 regime
44 representation
45 results
46 similar regimes
47 software implementation
48 solid-state phase transformation
49 steady-state energy deposition
50 structure
51 study
52 temperature history
53 terms
54 thermal analysis
55 transformation
56 types
57 weld temperature histories
58 welding process
59 welds
60 schema:name Case-Study Inverse Thermal Analyses of Al2198 Laser Welds
61 schema:pagination 471-480
62 schema:productId N37f70672c2574715826b207ba069c2c8
63 N580d113f08c3468a9e06051d9a7549a4
64 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007970852
65 https://doi.org/10.1007/s11665-011-9967-3
66 schema:sdDatePublished 2022-11-24T20:56
67 schema:sdLicense https://scigraph.springernature.com/explorer/license/
68 schema:sdPublisher N0fba5d01a7344806b27bb1fb86944cee
69 schema:url https://doi.org/10.1007/s11665-011-9967-3
70 sgo:license sg:explorer/license/
71 sgo:sdDataset articles
72 rdf:type schema:ScholarlyArticle
73 N0fba5d01a7344806b27bb1fb86944cee schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N1f87701196e944fab6f321e114937caf schema:volumeNumber 21
76 rdf:type schema:PublicationVolume
77 N36b1d04a11ef498e95eda2bee083b8fd rdf:first sg:person.012344701671.92
78 rdf:rest Nca3b50c5b2c24d7e9ef641505379f616
79 N37f70672c2574715826b207ba069c2c8 schema:name dimensions_id
80 schema:value pub.1007970852
81 rdf:type schema:PropertyValue
82 N580d113f08c3468a9e06051d9a7549a4 schema:name doi
83 schema:value 10.1007/s11665-011-9967-3
84 rdf:type schema:PropertyValue
85 N74597ec7decc4d969463fd7c3d1897f2 schema:issueNumber 4
86 rdf:type schema:PublicationIssue
87 N82a7bf66dae9434ea3dc898123460c86 rdf:first sg:person.07420163560.19
88 rdf:rest N87816a894e9041288ebdc512d8569ac7
89 N87816a894e9041288ebdc512d8569ac7 rdf:first sg:person.015521222033.93
90 rdf:rest N36b1d04a11ef498e95eda2bee083b8fd
91 Nca3b50c5b2c24d7e9ef641505379f616 rdf:first sg:person.015722475453.27
92 rdf:rest rdf:nil
93 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
94 schema:name Engineering
95 rdf:type schema:DefinedTerm
96 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
97 schema:name Manufacturing Engineering
98 rdf:type schema:DefinedTerm
99 sg:journal.1042007 schema:issn 1059-9495
100 1544-1024
101 schema:name Journal of Materials Engineering and Performance
102 schema:publisher Springer Nature
103 rdf:type schema:Periodical
104 sg:person.012344701671.92 schema:affiliation grid-institutes:grid.410558.d
105 schema:familyName Vriami
106 schema:givenName D. P.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012344701671.92
108 rdf:type schema:Person
109 sg:person.015521222033.93 schema:affiliation grid-institutes:grid.410558.d
110 schema:familyName Haidemenopoulos
111 schema:givenName G. N.
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015521222033.93
113 rdf:type schema:Person
114 sg:person.015722475453.27 schema:affiliation grid-institutes:grid.89170.37
115 schema:familyName Lambrakos
116 schema:givenName S. G.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015722475453.27
118 rdf:type schema:Person
119 sg:person.07420163560.19 schema:affiliation grid-institutes:grid.410558.d
120 schema:familyName Zervaki
121 schema:givenName A. D.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420163560.19
123 rdf:type schema:Person
124 grid-institutes:grid.410558.d schema:alternateName Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece
125 schema:name Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece
126 rdf:type schema:Organization
127 grid-institutes:grid.89170.37 schema:alternateName Center for Computational Materials, Code 6390, Materials Science and Technology Division, Naval Research Laboratory, Washington, DC, USA
128 schema:name Center for Computational Materials, Code 6390, Materials Science and Technology Division, Naval Research Laboratory, Washington, DC, USA
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...