Tensile Behavior of Ultrafine-Grained Al-4Zn-2Mg Alloy Produced by Cryorolling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-02-01

AUTHORS

K. Gopala Krishna, Nidhi Singh, K. Venkateswarlu, K. C. Hari Kumar

ABSTRACT

An Al-4Zn-2Mg alloy was subjected to cryorolling (CR) followed by short annealing. An average grain size of ~100 nm was achieved. Cryorolled samples showed large reduction in grain size due to suppression of dynamic recovery and absence of annihilation of dislocations, as compared to room temperature rolled samples. Further, the ultrafine-grained (UFG) Al-4Zn-2Mg alloy when subjected to natural aging showed an improved strength of ~413 MPa with ductility of ~25%, as compared to ~360 MPa and 22% ductility in peak aged condition of coarse-grained alloy. However, UFG alloy in peak aging condition, exhibited a relatively strength (~375 MPa) and 24% ductility combinations than the natural aging condition. The latter is attributed to dynamic precipitation and stored energy. In the present study, it is demonstrated that simultaneous improvement in strength as well as ductility can be achieved for the Al-4Zn-2Mg alloy through CR and controlled heat treatment combinations. More... »

PAGES

1569-1574

References to SciGraph publications

  • 1972-12. Influence of microstructure on the mechanical in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 1974-04. Aging kinetics of aluminum alloy 7050 in METALLURGICAL AND MATERIALS TRANSACTIONS B
  • 2000-03. Equal-channel angular pressing of commercial aluminum alloys: Grain refinement, thermal stability and tensile properties in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • 2001-06. A new route to bulk nanostructured metals in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11665-011-9843-1

    DOI

    http://dx.doi.org/10.1007/s11665-011-9843-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1040290321


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "National Metallurgical Laboratory (CSIR), Madras Centre, 600113, Chennai, India", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "National Metallurgical Laboratory (CSIR), Madras Centre, 600113, Chennai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gopala Krishna", 
            "givenName": "K.", 
            "id": "sg:person.011262216517.05", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262216517.05"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Physical Laboratory (CSIR), 110012, New Delhi, India", 
              "id": "http://www.grid.ac/institutes/grid.419701.a", 
              "name": [
                "National Physical Laboratory (CSIR), 110012, New Delhi, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Singh", 
            "givenName": "Nidhi", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Aerospace Laboratory (CSIR), 560017, Bangalore, India", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "National Aerospace Laboratory (CSIR), 560017, Bangalore, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Venkateswarlu", 
            "givenName": "K.", 
            "id": "sg:person.011776234071.26", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011776234071.26"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Madras, 600036, Chennai, India", 
              "id": "http://www.grid.ac/institutes/grid.417969.4", 
              "name": [
                "Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Madras, 600036, Chennai, India"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hari Kumar", 
            "givenName": "K. C.", 
            "id": "sg:person.010650145454.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650145454.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02661333", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030887452", 
              "https://doi.org/10.1007/bf02661333"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-000-0011-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032387061", 
              "https://doi.org/10.1007/s11661-000-0011-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02643150", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019071419", 
              "https://doi.org/10.1007/bf02643150"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11661-001-0245-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038577049", 
              "https://doi.org/10.1007/s11661-001-0245-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-02-01", 
        "datePublishedReg": "2011-02-01", 
        "description": "An Al-4Zn-2Mg alloy was subjected to cryorolling (CR) followed by short annealing. An average grain size of ~100\u00a0nm was achieved. Cryorolled samples showed large reduction in grain size due to suppression of dynamic recovery and absence of annihilation of dislocations, as compared to room temperature rolled samples. Further, the ultrafine-grained (UFG) Al-4Zn-2Mg alloy when subjected to natural aging showed an improved strength of ~413\u00a0MPa with ductility of ~25%, as compared to ~360\u00a0MPa and 22% ductility in peak aged condition of coarse-grained alloy. However, UFG alloy in peak aging condition, exhibited a relatively strength (~375\u00a0MPa) and 24% ductility combinations than the natural aging condition. The latter is attributed to dynamic precipitation and stored energy. In the present study, it is demonstrated that simultaneous improvement in strength as well as ductility can be achieved for the Al-4Zn-2Mg alloy through CR and controlled heat treatment combinations.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11665-011-9843-1", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042007", 
            "issn": [
              "1059-9495", 
              "1544-1024"
            ], 
            "name": "Journal of Materials Engineering and Performance", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "20"
          }
        ], 
        "keywords": [
          "aging conditions", 
          "grain size", 
          "peak aged condition", 
          "peak aging condition", 
          "average grain size", 
          "heat treatment combinations", 
          "ductility combination", 
          "natural ageing condition", 
          "dynamic precipitation", 
          "cryorolled samples", 
          "dynamic recovery", 
          "aged condition", 
          "tensile behavior", 
          "improved strength", 
          "ductility", 
          "alloy", 
          "short annealing", 
          "absence of annihilation", 
          "simultaneous improvement", 
          "MPa", 
          "natural aging", 
          "strength", 
          "UFG", 
          "ultrafine", 
          "annealing", 
          "large reduction", 
          "conditions", 
          "temperature", 
          "dislocations", 
          "size", 
          "energy", 
          "precipitation", 
          "behavior", 
          "Cr", 
          "combination", 
          "improvement", 
          "reduction", 
          "samples", 
          "recovery", 
          "aging", 
          "annihilation", 
          "present study", 
          "study", 
          "suppression", 
          "treatment combinations", 
          "absence", 
          "Al-4Zn-2Mg alloy", 
          "ultrafine-grained (UFG) Al-4Zn-2Mg alloy"
        ], 
        "name": "Tensile Behavior of Ultrafine-Grained Al-4Zn-2Mg Alloy Produced by Cryorolling", 
        "pagination": "1569-1574", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1040290321"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11665-011-9843-1"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11665-011-9843-1", 
          "https://app.dimensions.ai/details/publication/pub.1040290321"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:17", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_549.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11665-011-9843-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-011-9843-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-011-9843-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-011-9843-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-011-9843-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    150 TRIPLES      22 PREDICATES      77 URIs      65 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11665-011-9843-1 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N49e92a43d6c74b0b916a9eb79552059a
    4 schema:citation sg:pub.10.1007/bf02643150
    5 sg:pub.10.1007/bf02661333
    6 sg:pub.10.1007/s11661-000-0011-8
    7 sg:pub.10.1007/s11661-001-0245-0
    8 schema:datePublished 2011-02-01
    9 schema:datePublishedReg 2011-02-01
    10 schema:description An Al-4Zn-2Mg alloy was subjected to cryorolling (CR) followed by short annealing. An average grain size of ~100 nm was achieved. Cryorolled samples showed large reduction in grain size due to suppression of dynamic recovery and absence of annihilation of dislocations, as compared to room temperature rolled samples. Further, the ultrafine-grained (UFG) Al-4Zn-2Mg alloy when subjected to natural aging showed an improved strength of ~413 MPa with ductility of ~25%, as compared to ~360 MPa and 22% ductility in peak aged condition of coarse-grained alloy. However, UFG alloy in peak aging condition, exhibited a relatively strength (~375 MPa) and 24% ductility combinations than the natural aging condition. The latter is attributed to dynamic precipitation and stored energy. In the present study, it is demonstrated that simultaneous improvement in strength as well as ductility can be achieved for the Al-4Zn-2Mg alloy through CR and controlled heat treatment combinations.
    11 schema:genre article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf N2bf7d823409c445f884d5ae0168fdd19
    15 N67f74c6717a540c7b7ea0849c0f68e35
    16 sg:journal.1042007
    17 schema:keywords Al-4Zn-2Mg alloy
    18 Cr
    19 MPa
    20 UFG
    21 absence
    22 absence of annihilation
    23 aged condition
    24 aging
    25 aging conditions
    26 alloy
    27 annealing
    28 annihilation
    29 average grain size
    30 behavior
    31 combination
    32 conditions
    33 cryorolled samples
    34 dislocations
    35 ductility
    36 ductility combination
    37 dynamic precipitation
    38 dynamic recovery
    39 energy
    40 grain size
    41 heat treatment combinations
    42 improved strength
    43 improvement
    44 large reduction
    45 natural ageing condition
    46 natural aging
    47 peak aged condition
    48 peak aging condition
    49 precipitation
    50 present study
    51 recovery
    52 reduction
    53 samples
    54 short annealing
    55 simultaneous improvement
    56 size
    57 strength
    58 study
    59 suppression
    60 temperature
    61 tensile behavior
    62 treatment combinations
    63 ultrafine
    64 ultrafine-grained (UFG) Al-4Zn-2Mg alloy
    65 schema:name Tensile Behavior of Ultrafine-Grained Al-4Zn-2Mg Alloy Produced by Cryorolling
    66 schema:pagination 1569-1574
    67 schema:productId N3d8d3761d6c84d6ead39dccacf5b631b
    68 Na28fbf4849dd468790bab187412dc2c9
    69 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040290321
    70 https://doi.org/10.1007/s11665-011-9843-1
    71 schema:sdDatePublished 2021-11-01T18:17
    72 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    73 schema:sdPublisher N8fcb91e368d145759077d5e9767f9bf1
    74 schema:url https://doi.org/10.1007/s11665-011-9843-1
    75 sgo:license sg:explorer/license/
    76 sgo:sdDataset articles
    77 rdf:type schema:ScholarlyArticle
    78 N2bf7d823409c445f884d5ae0168fdd19 schema:issueNumber 9
    79 rdf:type schema:PublicationIssue
    80 N3d8d3761d6c84d6ead39dccacf5b631b schema:name dimensions_id
    81 schema:value pub.1040290321
    82 rdf:type schema:PropertyValue
    83 N3ddd1221401c42989a8697421a3b7aca schema:affiliation grid-institutes:grid.419701.a
    84 schema:familyName Singh
    85 schema:givenName Nidhi
    86 rdf:type schema:Person
    87 N49e92a43d6c74b0b916a9eb79552059a rdf:first sg:person.011262216517.05
    88 rdf:rest Nf136fb2de23c48e683f0aedccb1527a5
    89 N67f74c6717a540c7b7ea0849c0f68e35 schema:volumeNumber 20
    90 rdf:type schema:PublicationVolume
    91 N765b3fe5e34145598a13078040ced9df rdf:first sg:person.010650145454.49
    92 rdf:rest rdf:nil
    93 N8d4c5b91c83649729e1484ee5d003147 rdf:first sg:person.011776234071.26
    94 rdf:rest N765b3fe5e34145598a13078040ced9df
    95 N8fcb91e368d145759077d5e9767f9bf1 schema:name Springer Nature - SN SciGraph project
    96 rdf:type schema:Organization
    97 Na28fbf4849dd468790bab187412dc2c9 schema:name doi
    98 schema:value 10.1007/s11665-011-9843-1
    99 rdf:type schema:PropertyValue
    100 Nf136fb2de23c48e683f0aedccb1527a5 rdf:first N3ddd1221401c42989a8697421a3b7aca
    101 rdf:rest N8d4c5b91c83649729e1484ee5d003147
    102 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    103 schema:name Engineering
    104 rdf:type schema:DefinedTerm
    105 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    106 schema:name Materials Engineering
    107 rdf:type schema:DefinedTerm
    108 sg:journal.1042007 schema:issn 1059-9495
    109 1544-1024
    110 schema:name Journal of Materials Engineering and Performance
    111 schema:publisher Springer Nature
    112 rdf:type schema:Periodical
    113 sg:person.010650145454.49 schema:affiliation grid-institutes:grid.417969.4
    114 schema:familyName Hari Kumar
    115 schema:givenName K. C.
    116 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010650145454.49
    117 rdf:type schema:Person
    118 sg:person.011262216517.05 schema:affiliation grid-institutes:None
    119 schema:familyName Gopala Krishna
    120 schema:givenName K.
    121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011262216517.05
    122 rdf:type schema:Person
    123 sg:person.011776234071.26 schema:affiliation grid-institutes:None
    124 schema:familyName Venkateswarlu
    125 schema:givenName K.
    126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011776234071.26
    127 rdf:type schema:Person
    128 sg:pub.10.1007/bf02643150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019071419
    129 https://doi.org/10.1007/bf02643150
    130 rdf:type schema:CreativeWork
    131 sg:pub.10.1007/bf02661333 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030887452
    132 https://doi.org/10.1007/bf02661333
    133 rdf:type schema:CreativeWork
    134 sg:pub.10.1007/s11661-000-0011-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032387061
    135 https://doi.org/10.1007/s11661-000-0011-8
    136 rdf:type schema:CreativeWork
    137 sg:pub.10.1007/s11661-001-0245-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038577049
    138 https://doi.org/10.1007/s11661-001-0245-0
    139 rdf:type schema:CreativeWork
    140 grid-institutes:None schema:alternateName National Aerospace Laboratory (CSIR), 560017, Bangalore, India
    141 National Metallurgical Laboratory (CSIR), Madras Centre, 600113, Chennai, India
    142 schema:name National Aerospace Laboratory (CSIR), 560017, Bangalore, India
    143 National Metallurgical Laboratory (CSIR), Madras Centre, 600113, Chennai, India
    144 rdf:type schema:Organization
    145 grid-institutes:grid.417969.4 schema:alternateName Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Madras, 600036, Chennai, India
    146 schema:name Department of Metallurgical and Materials Engineering, Indian Institute of Technology, Madras, 600036, Chennai, India
    147 rdf:type schema:Organization
    148 grid-institutes:grid.419701.a schema:alternateName National Physical Laboratory (CSIR), 110012, New Delhi, India
    149 schema:name National Physical Laboratory (CSIR), 110012, New Delhi, India
    150 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...