Induction Hardening 5150 Steel: Effects of Initial Microstructure and Heating Rate View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-03

AUTHORS

K. D. Clarke, C. J. Van Tyne, C. J. Vigil, R. E. Hackenberg

ABSTRACT

Induction heating has permitted great progress in the surface hardening of a wide variety of steels, but results in a wide range of local thermal cycles. The metallurgical changes during rapid heating and cooling have not been sufficiently studied with respect to heating rate and prior microstructure. In the present investigation, induction dilatometry was performed on 5150 steel with ferrite-pearlite and tempered martensite initial microstructures to assess effects of experimentally controlled prior microstructure and heating rate on austenitization kinetics. Heating rates were varied from 0.3 to 300 °C/s to simulate industrial processes, and post-hardening metallography and hardness testing were performed. Results show that the transformation kinetics for prior ferrite-pearlite microstructures are significantly slower than for prior tempered martensite microstructures, although hardness is equivalent for a given thermal cycle. Metallographic evidence suggests significant remnant segregation of chromium in regions of pearlitic cementite (enriched); evidence of segregation was not observed metallographically for prior tempered martensite. Diffusion-based transformation simulations support observed ferrite-pearlite alloy segregation, suggest residual alloy segregation is possible for prior tempered martensite, and can be used to tailor austenitization thermal cycles to process requirements. Detailed time and temperature-dependent local microstructure development results from this study are directly applicable to practical induction hardening simulations. More... »

PAGES

161-168

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-010-9825-8

DOI

http://dx.doi.org/10.1007/s11665-010-9825-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045817270


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Colorado School of Mines, 80401, Golden, CO, USA", 
            "Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Clarke", 
        "givenName": "K. D.", 
        "id": "sg:person.014766205657.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014766205657.41"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Colorado School of Mines", 
          "id": "https://www.grid.ac/institutes/grid.254549.b", 
          "name": [
            "Colorado School of Mines, 80401, Golden, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Van Tyne", 
        "givenName": "C. J.", 
        "id": "sg:person.07741770136.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741770136.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vigil", 
        "givenName": "C. J.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Los Alamos National Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.148313.c", 
          "name": [
            "Los Alamos National Laboratory, 87545, Los Alamos, NM, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hackenberg", 
        "givenName": "R. E.", 
        "id": "sg:person.012347265151.14", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012347265151.14"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf02646882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001434513", 
          "https://doi.org/10.1007/bf02646882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02646882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001434513", 
          "https://doi.org/10.1007/bf02646882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02646498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007600677", 
          "https://doi.org/10.1007/bf02646498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02646498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007600677", 
          "https://doi.org/10.1007/bf02646498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1359-6454(99)00142-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007689459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02644694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010699970", 
          "https://doi.org/10.1007/bf02644694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02644694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010699970", 
          "https://doi.org/10.1007/bf02644694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02644694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010699970", 
          "https://doi.org/10.1007/bf02644694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02648551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011663378", 
          "https://doi.org/10.1007/bf02648551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02648551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011663378", 
          "https://doi.org/10.1007/bf02648551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1179/174328407x176857", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015282696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-006-0122-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023013993", 
          "https://doi.org/10.1007/s11661-006-0122-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-006-0122-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023013993", 
          "https://doi.org/10.1007/s11661-006-0122-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(56)90157-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036348226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-6160(56)90157-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036348226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02644421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050674521", 
          "https://doi.org/10.1007/bf02644421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02644421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050674521", 
          "https://doi.org/10.1007/bf02644421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02814228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051242006", 
          "https://doi.org/10.1007/bf02814228"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02814228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051242006", 
          "https://doi.org/10.1007/bf02814228"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-03", 
    "datePublishedReg": "2011-03-01", 
    "description": "Induction heating has permitted great progress in the surface hardening of a wide variety of steels, but results in a wide range of local thermal cycles. The metallurgical changes during rapid heating and cooling have not been sufficiently studied with respect to heating rate and prior microstructure. In the present investigation, induction dilatometry was performed on 5150 steel with ferrite-pearlite and tempered martensite initial microstructures to assess effects of experimentally controlled prior microstructure and heating rate on austenitization kinetics. Heating rates were varied from 0.3 to 300 \u00b0C/s to simulate industrial processes, and post-hardening metallography and hardness testing were performed. Results show that the transformation kinetics for prior ferrite-pearlite microstructures are significantly slower than for prior tempered martensite microstructures, although hardness is equivalent for a given thermal cycle. Metallographic evidence suggests significant remnant segregation of chromium in regions of pearlitic cementite (enriched); evidence of segregation was not observed metallographically for prior tempered martensite. Diffusion-based transformation simulations support observed ferrite-pearlite alloy segregation, suggest residual alloy segregation is possible for prior tempered martensite, and can be used to tailor austenitization thermal cycles to process requirements. Detailed time and temperature-dependent local microstructure development results from this study are directly applicable to practical induction hardening simulations.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11665-010-9825-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "20"
      }
    ], 
    "name": "Induction Hardening 5150 Steel: Effects of Initial Microstructure and Heating Rate", 
    "pagination": "161-168", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "da3f20345fe6efc5dfded17f6089dcb4f80799d46950d97f943c67bc3d3f3c63"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-010-9825-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045817270"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-010-9825-8", 
      "https://app.dimensions.ai/details/publication/pub.1045817270"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000524.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11665-010-9825-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-010-9825-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-010-9825-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-010-9825-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-010-9825-8'


 

This table displays all metadata directly associated to this object as RDF triples.

122 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-010-9825-8 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N3d5b2027cdd34e5d9d5d45bba9614d63
4 schema:citation sg:pub.10.1007/bf02644421
5 sg:pub.10.1007/bf02644694
6 sg:pub.10.1007/bf02646498
7 sg:pub.10.1007/bf02646882
8 sg:pub.10.1007/bf02648551
9 sg:pub.10.1007/bf02814228
10 sg:pub.10.1007/s11661-006-0122-y
11 https://doi.org/10.1016/0001-6160(56)90157-2
12 https://doi.org/10.1016/s1359-6454(99)00142-1
13 https://doi.org/10.1179/174328407x176857
14 schema:datePublished 2011-03
15 schema:datePublishedReg 2011-03-01
16 schema:description Induction heating has permitted great progress in the surface hardening of a wide variety of steels, but results in a wide range of local thermal cycles. The metallurgical changes during rapid heating and cooling have not been sufficiently studied with respect to heating rate and prior microstructure. In the present investigation, induction dilatometry was performed on 5150 steel with ferrite-pearlite and tempered martensite initial microstructures to assess effects of experimentally controlled prior microstructure and heating rate on austenitization kinetics. Heating rates were varied from 0.3 to 300 °C/s to simulate industrial processes, and post-hardening metallography and hardness testing were performed. Results show that the transformation kinetics for prior ferrite-pearlite microstructures are significantly slower than for prior tempered martensite microstructures, although hardness is equivalent for a given thermal cycle. Metallographic evidence suggests significant remnant segregation of chromium in regions of pearlitic cementite (enriched); evidence of segregation was not observed metallographically for prior tempered martensite. Diffusion-based transformation simulations support observed ferrite-pearlite alloy segregation, suggest residual alloy segregation is possible for prior tempered martensite, and can be used to tailor austenitization thermal cycles to process requirements. Detailed time and temperature-dependent local microstructure development results from this study are directly applicable to practical induction hardening simulations.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Nb631c6e79ccd46d886f3bdf3bd81e95a
21 Ndc6f576d2df74a498536e61fb2683de8
22 sg:journal.1042007
23 schema:name Induction Hardening 5150 Steel: Effects of Initial Microstructure and Heating Rate
24 schema:pagination 161-168
25 schema:productId N31981d5ba5e643ae8def121953db835f
26 N38b543ea4a844fc79f5ff52d7e3faaa2
27 N47e685b6ad4c40c191c1c0fa8e86f472
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045817270
29 https://doi.org/10.1007/s11665-010-9825-8
30 schema:sdDatePublished 2019-04-10T19:11
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nb2ef290d55a246f3acdca80beab93c5c
33 schema:url http://link.springer.com/10.1007%2Fs11665-010-9825-8
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N0d6749c7870549ed982cbf052e5d5793 rdf:first sg:person.07741770136.12
38 rdf:rest N7abaebd9a5ba4a9289ca6eb739bc74d2
39 N31981d5ba5e643ae8def121953db835f schema:name dimensions_id
40 schema:value pub.1045817270
41 rdf:type schema:PropertyValue
42 N3399f274d8a74e9883ccc34cc5bd04b1 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
43 schema:familyName Vigil
44 schema:givenName C. J.
45 rdf:type schema:Person
46 N38b543ea4a844fc79f5ff52d7e3faaa2 schema:name doi
47 schema:value 10.1007/s11665-010-9825-8
48 rdf:type schema:PropertyValue
49 N3d5b2027cdd34e5d9d5d45bba9614d63 rdf:first sg:person.014766205657.41
50 rdf:rest N0d6749c7870549ed982cbf052e5d5793
51 N47e685b6ad4c40c191c1c0fa8e86f472 schema:name readcube_id
52 schema:value da3f20345fe6efc5dfded17f6089dcb4f80799d46950d97f943c67bc3d3f3c63
53 rdf:type schema:PropertyValue
54 N7abaebd9a5ba4a9289ca6eb739bc74d2 rdf:first N3399f274d8a74e9883ccc34cc5bd04b1
55 rdf:rest N9a7fa6f16ccf42109f014b7cfac119c0
56 N9a7fa6f16ccf42109f014b7cfac119c0 rdf:first sg:person.012347265151.14
57 rdf:rest rdf:nil
58 Nb2ef290d55a246f3acdca80beab93c5c schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nb631c6e79ccd46d886f3bdf3bd81e95a schema:issueNumber 2
61 rdf:type schema:PublicationIssue
62 Ndc6f576d2df74a498536e61fb2683de8 schema:volumeNumber 20
63 rdf:type schema:PublicationVolume
64 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
65 schema:name Engineering
66 rdf:type schema:DefinedTerm
67 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
68 schema:name Materials Engineering
69 rdf:type schema:DefinedTerm
70 sg:journal.1042007 schema:issn 1059-9495
71 1544-1024
72 schema:name Journal of Materials Engineering and Performance
73 rdf:type schema:Periodical
74 sg:person.012347265151.14 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
75 schema:familyName Hackenberg
76 schema:givenName R. E.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012347265151.14
78 rdf:type schema:Person
79 sg:person.014766205657.41 schema:affiliation https://www.grid.ac/institutes/grid.148313.c
80 schema:familyName Clarke
81 schema:givenName K. D.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014766205657.41
83 rdf:type schema:Person
84 sg:person.07741770136.12 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
85 schema:familyName Van Tyne
86 schema:givenName C. J.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741770136.12
88 rdf:type schema:Person
89 sg:pub.10.1007/bf02644421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050674521
90 https://doi.org/10.1007/bf02644421
91 rdf:type schema:CreativeWork
92 sg:pub.10.1007/bf02644694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010699970
93 https://doi.org/10.1007/bf02644694
94 rdf:type schema:CreativeWork
95 sg:pub.10.1007/bf02646498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007600677
96 https://doi.org/10.1007/bf02646498
97 rdf:type schema:CreativeWork
98 sg:pub.10.1007/bf02646882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001434513
99 https://doi.org/10.1007/bf02646882
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/bf02648551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011663378
102 https://doi.org/10.1007/bf02648551
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/bf02814228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051242006
105 https://doi.org/10.1007/bf02814228
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11661-006-0122-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1023013993
108 https://doi.org/10.1007/s11661-006-0122-y
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0001-6160(56)90157-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036348226
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/s1359-6454(99)00142-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007689459
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1179/174328407x176857 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015282696
115 rdf:type schema:CreativeWork
116 https://www.grid.ac/institutes/grid.148313.c schema:alternateName Los Alamos National Laboratory
117 schema:name Colorado School of Mines, 80401, Golden, CO, USA
118 Los Alamos National Laboratory, 87545, Los Alamos, NM, USA
119 rdf:type schema:Organization
120 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
121 schema:name Colorado School of Mines, 80401, Golden, CO, USA
122 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...