A General Algorithm for Inverse Modeling of Layer-By-Layer Liquid-Metal Deposition View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-04

AUTHORS

S. G. Lambrakos, K. P. Cooper

ABSTRACT

In order that freeform fabrication techniques, which entail layer-by-layer liquid-metal deposition, transition from prototyping to manufacturing, these techniques must be made reliable and consistent. Accordingly, detailed microstructural and thermal characterizations of the structures produced are needed in order to advance these fabrication techniques. The inherent complexity of layer-by-layer liquid-metal deposition, which is characteristic of energy and mass deposition processes in general, is such that process modeling based on basic theory alone, which represents the direct-problem approach, is extremely difficult. A general approach to overcoming the difficulties associated with this inherent complexity is the inverse problem approach. Presented here is a general algorithmic structure for inverse modeling of heat transfer that occurs during layer-by-layer fabrication. This general algorithmic structure represents an extension and refinement of an algorithmic structure presented previously and is potentially adaptable for prediction of temperature histories within parts having complex geometries and for the construction of process-control algorithms. More... »

PAGES

314-324

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-009-9497-4

DOI

http://dx.doi.org/10.1007/s11665-009-9497-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030289943


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Manufacturing Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "United States Naval Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Naval Research Laboratory, Materials Science and Technology Division, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lambrakos", 
        "givenName": "S. G.", 
        "id": "sg:person.01265271754.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265271754.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Naval Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Naval Research Laboratory, Materials Science and Technology Division, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cooper", 
        "givenName": "K. P.", 
        "id": "sg:person.013075065325.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075065325.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-322-99202-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016034374", 
          "https://doi.org/10.1007/978-3-322-99202-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-322-99202-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016034374", 
          "https://doi.org/10.1007/978-3-322-99202-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-76436-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022507078", 
          "https://doi.org/10.1007/978-3-642-76436-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-76436-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022507078", 
          "https://doi.org/10.1007/978-3-642-76436-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11428848_95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023547261", 
          "https://doi.org/10.1007/11428848_95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/11428848_95", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023547261", 
          "https://doi.org/10.1007/11428848_95"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-000-0028-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031989878", 
          "https://doi.org/10.1007/s11837-000-0028-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11665-009-9368-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033726028", 
          "https://doi.org/10.1007/s11665-009-9368-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-001-0067-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045226426", 
          "https://doi.org/10.1007/s11837-001-0067-y"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/030602551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062842822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/proc-758-ll1.4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067956055"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/wsc.2006.322998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093374091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898717921", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098555803"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898717570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098557261"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5338-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705064", 
          "https://doi.org/10.1007/978-1-4612-5338-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4612-5338-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1109705064", 
          "https://doi.org/10.1007/978-1-4612-5338-9"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-04", 
    "datePublishedReg": "2010-04-01", 
    "description": "In order that freeform fabrication techniques, which entail layer-by-layer liquid-metal deposition, transition from prototyping to manufacturing, these techniques must be made reliable and consistent. Accordingly, detailed microstructural and thermal characterizations of the structures produced are needed in order to advance these fabrication techniques. The inherent complexity of layer-by-layer liquid-metal deposition, which is characteristic of energy and mass deposition processes in general, is such that process modeling based on basic theory alone, which represents the direct-problem approach, is extremely difficult. A general approach to overcoming the difficulties associated with this inherent complexity is the inverse problem approach. Presented here is a general algorithmic structure for inverse modeling of heat transfer that occurs during layer-by-layer fabrication. This general algorithmic structure represents an extension and refinement of an algorithmic structure presented previously and is potentially adaptable for prediction of temperature histories within parts having complex geometries and for the construction of process-control algorithms.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11665-009-9497-4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "19"
      }
    ], 
    "name": "A General Algorithm for Inverse Modeling of Layer-By-Layer Liquid-Metal Deposition", 
    "pagination": "314-324", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "904b8110d680af620e2160fb54d5b82e7a0b74ece2b528b48f9288a4b5901119"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-009-9497-4"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030289943"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-009-9497-4", 
      "https://app.dimensions.ai/details/publication/pub.1030289943"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:27", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64121_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11665-009-9497-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-009-9497-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-009-9497-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-009-9497-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-009-9497-4'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-009-9497-4 schema:about anzsrc-for:09
2 anzsrc-for:0910
3 schema:author N7b17019810ee427bb94698109b37ae3f
4 schema:citation sg:pub.10.1007/11428848_95
5 sg:pub.10.1007/978-1-4612-5338-9
6 sg:pub.10.1007/978-3-322-99202-4
7 sg:pub.10.1007/978-3-642-76436-3
8 sg:pub.10.1007/s11665-009-9368-z
9 sg:pub.10.1007/s11837-000-0028-x
10 sg:pub.10.1007/s11837-001-0067-y
11 https://doi.org/10.1109/wsc.2006.322998
12 https://doi.org/10.1137/030602551
13 https://doi.org/10.1137/1.9780898717570
14 https://doi.org/10.1137/1.9780898717921
15 https://doi.org/10.1557/proc-758-ll1.4
16 schema:datePublished 2010-04
17 schema:datePublishedReg 2010-04-01
18 schema:description In order that freeform fabrication techniques, which entail layer-by-layer liquid-metal deposition, transition from prototyping to manufacturing, these techniques must be made reliable and consistent. Accordingly, detailed microstructural and thermal characterizations of the structures produced are needed in order to advance these fabrication techniques. The inherent complexity of layer-by-layer liquid-metal deposition, which is characteristic of energy and mass deposition processes in general, is such that process modeling based on basic theory alone, which represents the direct-problem approach, is extremely difficult. A general approach to overcoming the difficulties associated with this inherent complexity is the inverse problem approach. Presented here is a general algorithmic structure for inverse modeling of heat transfer that occurs during layer-by-layer fabrication. This general algorithmic structure represents an extension and refinement of an algorithmic structure presented previously and is potentially adaptable for prediction of temperature histories within parts having complex geometries and for the construction of process-control algorithms.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N1bc54ca486d349beaf881607bad7ad6d
23 N2c3ee6f2140647fd8042c65187e635bb
24 sg:journal.1042007
25 schema:name A General Algorithm for Inverse Modeling of Layer-By-Layer Liquid-Metal Deposition
26 schema:pagination 314-324
27 schema:productId N3aa17072abd14739bdcd2962ec54ec66
28 N46b8fe55a06d4f3691f87497df86316b
29 Nb5614d7a50f1446690a37dca45a4a187
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030289943
31 https://doi.org/10.1007/s11665-009-9497-4
32 schema:sdDatePublished 2019-04-11T09:27
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N738775a59efc4b88b640e24311a2bf43
35 schema:url http://link.springer.com/10.1007%2Fs11665-009-9497-4
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N1bc54ca486d349beaf881607bad7ad6d schema:volumeNumber 19
40 rdf:type schema:PublicationVolume
41 N22fd383f99ba46408f0c89ccbcb0c65b rdf:first sg:person.013075065325.23
42 rdf:rest rdf:nil
43 N2c3ee6f2140647fd8042c65187e635bb schema:issueNumber 3
44 rdf:type schema:PublicationIssue
45 N3aa17072abd14739bdcd2962ec54ec66 schema:name dimensions_id
46 schema:value pub.1030289943
47 rdf:type schema:PropertyValue
48 N46b8fe55a06d4f3691f87497df86316b schema:name doi
49 schema:value 10.1007/s11665-009-9497-4
50 rdf:type schema:PropertyValue
51 N738775a59efc4b88b640e24311a2bf43 schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N7b17019810ee427bb94698109b37ae3f rdf:first sg:person.01265271754.16
54 rdf:rest N22fd383f99ba46408f0c89ccbcb0c65b
55 Nb5614d7a50f1446690a37dca45a4a187 schema:name readcube_id
56 schema:value 904b8110d680af620e2160fb54d5b82e7a0b74ece2b528b48f9288a4b5901119
57 rdf:type schema:PropertyValue
58 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
59 schema:name Engineering
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
62 schema:name Manufacturing Engineering
63 rdf:type schema:DefinedTerm
64 sg:journal.1042007 schema:issn 1059-9495
65 1544-1024
66 schema:name Journal of Materials Engineering and Performance
67 rdf:type schema:Periodical
68 sg:person.01265271754.16 schema:affiliation https://www.grid.ac/institutes/grid.89170.37
69 schema:familyName Lambrakos
70 schema:givenName S. G.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265271754.16
72 rdf:type schema:Person
73 sg:person.013075065325.23 schema:affiliation https://www.grid.ac/institutes/grid.89170.37
74 schema:familyName Cooper
75 schema:givenName K. P.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075065325.23
77 rdf:type schema:Person
78 sg:pub.10.1007/11428848_95 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023547261
79 https://doi.org/10.1007/11428848_95
80 rdf:type schema:CreativeWork
81 sg:pub.10.1007/978-1-4612-5338-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1109705064
82 https://doi.org/10.1007/978-1-4612-5338-9
83 rdf:type schema:CreativeWork
84 sg:pub.10.1007/978-3-322-99202-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016034374
85 https://doi.org/10.1007/978-3-322-99202-4
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/978-3-642-76436-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022507078
88 https://doi.org/10.1007/978-3-642-76436-3
89 rdf:type schema:CreativeWork
90 sg:pub.10.1007/s11665-009-9368-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1033726028
91 https://doi.org/10.1007/s11665-009-9368-z
92 rdf:type schema:CreativeWork
93 sg:pub.10.1007/s11837-000-0028-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031989878
94 https://doi.org/10.1007/s11837-000-0028-x
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/s11837-001-0067-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1045226426
97 https://doi.org/10.1007/s11837-001-0067-y
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1109/wsc.2006.322998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093374091
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1137/030602551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842822
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1137/1.9780898717570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098557261
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1137/1.9780898717921 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098555803
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1557/proc-758-ll1.4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067956055
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.89170.37 schema:alternateName United States Naval Research Laboratory
110 schema:name Naval Research Laboratory, Materials Science and Technology Division, Washington, DC, USA
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...