Correlation of Yield Strength and Tensile Strength with Hardness for Steels View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-12

AUTHORS

E.J. Pavlina, C.J. Van Tyne

ABSTRACT

Hardness values as well as yield and tensile strength values were compiled for over 150 nonaustenitic, hypoeutectoid steels having a wide range of compositions and a variety of microstructures. The microstructures include ferrite, pearlite, martensite, bainite, and complex multiphase structures. The yield strength of the steels ranged from approximately 300 MPa to over 1700 MPa. Tensile strength varied over the range of 450-2350 MPa. Regression analysis was used to determine the correlation of the yield strength and the tensile strength to the diamond pyramid hardness values for these steels. Both the yield strength and tensile strength of the steels exhibited a linear correlation with the hardness over the entire range of strength values. Empirical relationships are provided that enable the estimation of strength from a bulk hardness measurement. A weak effect of strain-hardening potential on the hardness-yield strength relationship was also observed. More... »

PAGES

888-893

References to SciGraph publications

Journal

Author Affiliations

Related Patents

  • High Power Laser-Mechanical Drilling Bit And Methods Of Use
  • Method And Apparatus For Delivering High Power Laser Energy Over Long Distances
  • High Power Laser Rov Systems And Methods For Treating Subsea Structures
  • High Power Laser Perforating And Laser Fracturing Tools And Methods Of Use
  • Systems And Assemblies For Transferring High Power Laser Energy Through A Rotating Junction
  • Optical Fiber Configurations For Transmission Of Laser Energy Over Great Distances
  • Laser Assisted Blowout Preventer And Methods Of Use
  • Reduced Mechanical Energy Well Control Systems And Methods Of Use
  • High Power Laser Perforating Tools And Systems
  • High Power Laser Photo-Conversion Assemblies, Apparatuses And Methods Of Use
  • Optical Fiber Cable For Transmission Of High Power Laser Energy Over Great Distances
  • High Power Laser Decomissioning Of Multistring And Damaged Wells
  • Laser Assisted System For Controlling Deep Water Drilling Emergency Situations
  • Laser Assisted System For Controlling Deep Water Drilling Emergency Situations
  • Apparatus For Advancing A Wellbore Using High Power Laser Energy
  • Method And System For Advancement Of A Borehole Using A High Power Laser
  • Systems And Conveyance Structures For High Power Long Distance Laser Transmission
  • Optics Assembly For High Power Laser Tools
  • Rugged Passively Cooled High Power Laser Fiber Optic Connectors And Methods Of Use
  • Methods And Apparatus For Delivering High Power Laser Energy To A Surface
  • Method And Apparatus For Delivering High Power Laser Energy Over Long Distances
  • Laser Systems And Methods For The Removal Of Structures
  • High Power Laser Offshore Decommissioning Tool, System And Methods Of Use
  • Control System For High Power Laser Drilling Workover And Completion Unit
  • High Power Laser Downhole Cutting Tools And Systems
  • Systems And Conveyance Structures For High Power Long Distance Laser Transmission
  • Electric Motor For Laser-Mechanical Drilling
  • High Power Laser Pipeline Tool And Methods Of Use
  • High Power Laser Energy Distribution Patterns, Apparatus And Methods For Creating Wells
  • Optical Fiber Configurations For Transmission Of Laser Energy Over Great Distances
  • Electric Motor For Laser-Mechanical Drilling
  • Methods For Enhancing The Efficiency Of Creating A Borehole Using High Power Laser Systems
  • Long Distance High Power Optical Laser Fiber Break Detection And Continuity Monitoring Systems And Methods
  • High Power Laser Workover And Completion Tools And Systems
  • Laser Assisted Riser Disconnect And Method Of Use
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11665-008-9225-5

    DOI

    http://dx.doi.org/10.1007/s11665-008-9225-5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042407163


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Colorado School of Mines", 
              "id": "https://www.grid.ac/institutes/grid.254549.b", 
              "name": [
                "Department of Metallurgical and Materials Engineering, Colorado School of Mines, 80401, Golden, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Pavlina", 
            "givenName": "E.J.", 
            "id": "sg:person.011277652255.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011277652255.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Colorado School of Mines", 
              "id": "https://www.grid.ac/institutes/grid.254549.b", 
              "name": [
                "Department of Metallurgical and Materials Engineering, Colorado School of Mines, 80401, Golden, CO, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Van Tyne", 
            "givenName": "C.J.", 
            "id": "sg:person.07741770136.12", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741770136.12"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02652880", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1007080663", 
              "https://doi.org/10.1007/bf02652880"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0022-3115(86)80093-9", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1008807735"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.engfailanal.2004.09.005", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023775154"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2005.04.024", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025856991"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.msea.2005.04.042", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1031508086"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02661365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036597363", 
              "https://doi.org/10.1007/bf02661365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02661365", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1036597363", 
              "https://doi.org/10.1007/bf02661365"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1115/1.3427785", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062122425"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02913433", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085133956", 
              "https://doi.org/10.1007/bf02913433"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-12", 
        "datePublishedReg": "2008-12-01", 
        "description": "Hardness values as well as yield and tensile strength values were compiled for over 150 nonaustenitic, hypoeutectoid steels having a wide range of compositions and a variety of microstructures. The microstructures include ferrite, pearlite, martensite, bainite, and complex multiphase structures. The yield strength of the steels ranged from approximately 300 MPa to over 1700 MPa. Tensile strength varied over the range of 450-2350 MPa. Regression analysis was used to determine the correlation of the yield strength and the tensile strength to the diamond pyramid hardness values for these steels. Both the yield strength and tensile strength of the steels exhibited a linear correlation with the hardness over the entire range of strength values. Empirical relationships are provided that enable the estimation of strength from a bulk hardness measurement. A weak effect of strain-hardening potential on the hardness-yield strength relationship was also observed.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11665-008-9225-5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042007", 
            "issn": [
              "1059-9495", 
              "1544-1024"
            ], 
            "name": "Journal of Materials Engineering and Performance", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "name": "Correlation of Yield Strength and Tensile Strength with Hardness for Steels", 
        "pagination": "888-893", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "ca00f7e7dbfb5f63a37c8873bfc05246e1cc6c4eb6c2dc128464d1b119550b9a"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11665-008-9225-5"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042407163"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11665-008-9225-5", 
          "https://app.dimensions.ai/details/publication/pub.1042407163"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T14:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000523.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11665-008-9225-5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-008-9225-5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-008-9225-5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-008-9225-5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-008-9225-5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    95 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11665-008-9225-5 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author Na5d3d9a2ca2c41a89b333654c0427dac
    4 schema:citation sg:pub.10.1007/bf02652880
    5 sg:pub.10.1007/bf02661365
    6 sg:pub.10.1007/bf02913433
    7 https://doi.org/10.1016/j.engfailanal.2004.09.005
    8 https://doi.org/10.1016/j.msea.2005.04.024
    9 https://doi.org/10.1016/j.msea.2005.04.042
    10 https://doi.org/10.1016/s0022-3115(86)80093-9
    11 https://doi.org/10.1115/1.3427785
    12 schema:datePublished 2008-12
    13 schema:datePublishedReg 2008-12-01
    14 schema:description Hardness values as well as yield and tensile strength values were compiled for over 150 nonaustenitic, hypoeutectoid steels having a wide range of compositions and a variety of microstructures. The microstructures include ferrite, pearlite, martensite, bainite, and complex multiphase structures. The yield strength of the steels ranged from approximately 300 MPa to over 1700 MPa. Tensile strength varied over the range of 450-2350 MPa. Regression analysis was used to determine the correlation of the yield strength and the tensile strength to the diamond pyramid hardness values for these steels. Both the yield strength and tensile strength of the steels exhibited a linear correlation with the hardness over the entire range of strength values. Empirical relationships are provided that enable the estimation of strength from a bulk hardness measurement. A weak effect of strain-hardening potential on the hardness-yield strength relationship was also observed.
    15 schema:genre research_article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N9181d2ff2bcd402abc7dc8ae6747cc3a
    19 Nbf36c711e1fd444289f82088ea811a09
    20 sg:journal.1042007
    21 schema:name Correlation of Yield Strength and Tensile Strength with Hardness for Steels
    22 schema:pagination 888-893
    23 schema:productId N5f436f0c1d574615910245f428446762
    24 N6bc7bb74c88e404e8d9f44b151b6f552
    25 Ncb67a50bf1c54280ac138e7eb23b003e
    26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042407163
    27 https://doi.org/10.1007/s11665-008-9225-5
    28 schema:sdDatePublished 2019-04-10T14:13
    29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    30 schema:sdPublisher Nc8bea8629eb04ac0907f1573bb8c6918
    31 schema:url http://link.springer.com/10.1007%2Fs11665-008-9225-5
    32 sgo:license sg:explorer/license/
    33 sgo:sdDataset articles
    34 rdf:type schema:ScholarlyArticle
    35 N210257d703264de18a149af64e53f73c rdf:first sg:person.07741770136.12
    36 rdf:rest rdf:nil
    37 N5f436f0c1d574615910245f428446762 schema:name doi
    38 schema:value 10.1007/s11665-008-9225-5
    39 rdf:type schema:PropertyValue
    40 N6bc7bb74c88e404e8d9f44b151b6f552 schema:name readcube_id
    41 schema:value ca00f7e7dbfb5f63a37c8873bfc05246e1cc6c4eb6c2dc128464d1b119550b9a
    42 rdf:type schema:PropertyValue
    43 N9181d2ff2bcd402abc7dc8ae6747cc3a schema:issueNumber 6
    44 rdf:type schema:PublicationIssue
    45 Na5d3d9a2ca2c41a89b333654c0427dac rdf:first sg:person.011277652255.50
    46 rdf:rest N210257d703264de18a149af64e53f73c
    47 Nbf36c711e1fd444289f82088ea811a09 schema:volumeNumber 17
    48 rdf:type schema:PublicationVolume
    49 Nc8bea8629eb04ac0907f1573bb8c6918 schema:name Springer Nature - SN SciGraph project
    50 rdf:type schema:Organization
    51 Ncb67a50bf1c54280ac138e7eb23b003e schema:name dimensions_id
    52 schema:value pub.1042407163
    53 rdf:type schema:PropertyValue
    54 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    55 schema:name Engineering
    56 rdf:type schema:DefinedTerm
    57 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    58 schema:name Materials Engineering
    59 rdf:type schema:DefinedTerm
    60 sg:journal.1042007 schema:issn 1059-9495
    61 1544-1024
    62 schema:name Journal of Materials Engineering and Performance
    63 rdf:type schema:Periodical
    64 sg:person.011277652255.50 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
    65 schema:familyName Pavlina
    66 schema:givenName E.J.
    67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011277652255.50
    68 rdf:type schema:Person
    69 sg:person.07741770136.12 schema:affiliation https://www.grid.ac/institutes/grid.254549.b
    70 schema:familyName Van Tyne
    71 schema:givenName C.J.
    72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07741770136.12
    73 rdf:type schema:Person
    74 sg:pub.10.1007/bf02652880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007080663
    75 https://doi.org/10.1007/bf02652880
    76 rdf:type schema:CreativeWork
    77 sg:pub.10.1007/bf02661365 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036597363
    78 https://doi.org/10.1007/bf02661365
    79 rdf:type schema:CreativeWork
    80 sg:pub.10.1007/bf02913433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085133956
    81 https://doi.org/10.1007/bf02913433
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1016/j.engfailanal.2004.09.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023775154
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1016/j.msea.2005.04.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025856991
    86 rdf:type schema:CreativeWork
    87 https://doi.org/10.1016/j.msea.2005.04.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031508086
    88 rdf:type schema:CreativeWork
    89 https://doi.org/10.1016/s0022-3115(86)80093-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008807735
    90 rdf:type schema:CreativeWork
    91 https://doi.org/10.1115/1.3427785 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062122425
    92 rdf:type schema:CreativeWork
    93 https://www.grid.ac/institutes/grid.254549.b schema:alternateName Colorado School of Mines
    94 schema:name Department of Metallurgical and Materials Engineering, Colorado School of Mines, 80401, Golden, CO, USA
    95 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...