Investigations on Heat Treatment of a High-Speed Steel Roll View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-08-01

AUTHORS

Hanguang Fu, Yinhu Qu, Jiandong Xing, Xiaohui Zhi, Zhiqiang Jiang, Mingwei Li, Yi Zhang

ABSTRACT

High-carbon high-speed steels (HSS) are very abrasion-resistant materials primarily due to their high hardness MC-type carbide and high hardness martensitic matrix. The effects of quenching and tempering treatment on the microstructure, mechanical properties, and abrasion resistance of centrifugal casting high-carbon HSS roll were studied. Different microstructures and mechanical properties were obtained after the quenching and tempering temperatures of HSS roll were changed. With air-cooling and sodium silicate solution cooling, when the austenitizing temperature reaches 1273 K, the metallic matrix all transforms into the martensite. Afterwards, the eutectic carbides dissolve into the metallic matrix and their continuous network distribution changes into the broken network. The second hardening temperature of high-carbon HSS roll is around 793 K. No significant changes in tensile strength and elongation percentage are observed unless the tempering temperature is beyond 753 K. The tensile strength increases obviously and the elongation percentage decreases slightly beyond 753 K. However, the tensile strength decreases and the elongation percentage increases when the tempering temperature exceeds 813 K. When the tempering temperature excels 773 K, the impact toughness has a slight decrease. Tempering at 793-813 K, high-carbon HSS roll presents excellent abrasion resistance. More... »

PAGES

535-542

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-007-9174-4

DOI

http://dx.doi.org/10.1007/s11665-007-9174-4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039851306


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi Province, P R China", 
          "id": "http://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "Research Institute of Advance Materials Processing Technology, School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, P R China", 
            "State Key Laboratory of Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi Province, P R China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Hanguang", 
        "id": "sg:person.016117416053.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117416053.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "School of Electromechanical Engineering, Xi\u2019an Polytechnic University, 710048, Xi\u2019an, Shaanxi Province, P R China", 
          "id": "http://www.grid.ac/institutes/grid.464495.e", 
          "name": [
            "School of Electromechanical Engineering, Xi\u2019an Polytechnic University, 710048, Xi\u2019an, Shaanxi Province, P R China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Qu", 
        "givenName": "Yinhu", 
        "id": "sg:person.015233565657.13", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015233565657.13"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi Province, P R China", 
          "id": "http://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory of Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi Province, P R China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Xing", 
        "givenName": "Jiandong", 
        "id": "sg:person.013310307055.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310307055.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi Province, P R China", 
          "id": "http://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory of Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi Province, P R China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhi", 
        "givenName": "Xiaohui", 
        "id": "sg:person.016305177642.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016305177642.33"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "State Key Laboratory of Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi Province, P R China", 
          "id": "http://www.grid.ac/institutes/grid.43169.39", 
          "name": [
            "State Key Laboratory of Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi\u2019an Jiaotong University, 710049, Xi\u2019an, Shaanxi Province, P R China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jiang", 
        "givenName": "Zhiqiang", 
        "id": "sg:person.012136331417.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012136331417.76"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing Qhuanshen Harbor Machinery Manufacture Co. Ltd., 400045, Chongqing, P R China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Chongqing Qhuanshen Harbor Machinery Manufacture Co. Ltd., 400045, Chongqing, P R China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Li", 
        "givenName": "Mingwei", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Chongqing Qhuanshen Harbor Machinery Manufacture Co. Ltd., 400045, Chongqing, P R China", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Chongqing Qhuanshen Harbor Machinery Manufacture Co. Ltd., 400045, Chongqing, P R China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Yi", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4613-9535-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041607404", 
          "https://doi.org/10.1007/978-1-4613-9535-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11661-005-0141-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019310525", 
          "https://doi.org/10.1007/s11661-005-0141-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02833237", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007509819", 
          "https://doi.org/10.1007/bf02833237"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-08-01", 
    "datePublishedReg": "2008-08-01", 
    "description": "High-carbon high-speed steels (HSS) are very abrasion-resistant materials primarily due to their high hardness MC-type carbide and high hardness martensitic matrix. The effects of quenching and tempering treatment on the microstructure, mechanical properties, and abrasion resistance of centrifugal casting high-carbon HSS roll were studied. Different microstructures and mechanical properties were obtained after the quenching and tempering temperatures of HSS roll were changed. With air-cooling and sodium silicate solution cooling, when the austenitizing temperature reaches 1273\u00a0K, the metallic matrix all transforms into the martensite. Afterwards, the eutectic carbides dissolve into the metallic matrix and their continuous network distribution changes into the broken network. The second hardening temperature of high-carbon HSS roll is around 793\u00a0K. No significant changes in tensile strength and elongation percentage are observed unless the tempering temperature is beyond 753\u00a0K. The tensile strength increases obviously and the elongation percentage decreases slightly beyond 753\u00a0K. However, the tensile strength decreases and the elongation percentage increases when the tempering temperature exceeds 813\u00a0K. When the tempering temperature excels 773\u00a0K, the impact toughness has a slight decrease. Tempering at 793-813\u00a0K, high-carbon HSS roll presents excellent abrasion resistance.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11665-007-9174-4", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "17"
      }
    ], 
    "keywords": [
      "mechanical properties", 
      "abrasion resistance", 
      "tensile strength", 
      "metallic matrix", 
      "elongation percentage", 
      "high-speed steel", 
      "abrasion-resistant materials", 
      "MC-type carbides", 
      "speed steel roll", 
      "excellent abrasion resistance", 
      "tensile strength decreases", 
      "HSS roll", 
      "impact toughness", 
      "steel rolls", 
      "martensitic matrix", 
      "tempering temperature", 
      "eutectic carbides", 
      "austenitizing temperature", 
      "different microstructures", 
      "effects of quenching", 
      "strength decreases", 
      "heat treatment", 
      "carbide", 
      "microstructure", 
      "roll", 
      "solution cooling", 
      "temperature", 
      "broken network", 
      "strength", 
      "steel", 
      "toughness", 
      "martensite", 
      "matrix", 
      "properties", 
      "cooling", 
      "distribution changes", 
      "resistance", 
      "materials", 
      "slight decrease", 
      "quenching", 
      "investigation", 
      "percentage increase", 
      "decrease", 
      "effect", 
      "increase", 
      "network", 
      "changes", 
      "percentage", 
      "significant changes", 
      "treatment", 
      "High-carbon high-speed steels", 
      "high hardness MC-type carbide", 
      "hardness MC-type carbide", 
      "high hardness martensitic matrix", 
      "hardness martensitic matrix", 
      "high-carbon HSS roll", 
      "HSS roll", 
      "sodium silicate solution cooling", 
      "silicate solution cooling", 
      "continuous network distribution changes", 
      "network distribution changes", 
      "elongation percentage increases"
    ], 
    "name": "Investigations on Heat Treatment of a High-Speed Steel Roll", 
    "pagination": "535-542", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039851306"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-007-9174-4"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-007-9174-4", 
      "https://app.dimensions.ai/details/publication/pub.1039851306"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_470.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11665-007-9174-4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-007-9174-4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-007-9174-4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-007-9174-4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-007-9174-4'


 

This table displays all metadata directly associated to this object as RDF triples.

178 TRIPLES      22 PREDICATES      89 URIs      78 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-007-9174-4 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N42a396aec1fa477dae3e860bdcb588d8
4 schema:citation sg:pub.10.1007/978-1-4613-9535-5
5 sg:pub.10.1007/bf02833237
6 sg:pub.10.1007/s11661-005-0141-0
7 schema:datePublished 2008-08-01
8 schema:datePublishedReg 2008-08-01
9 schema:description High-carbon high-speed steels (HSS) are very abrasion-resistant materials primarily due to their high hardness MC-type carbide and high hardness martensitic matrix. The effects of quenching and tempering treatment on the microstructure, mechanical properties, and abrasion resistance of centrifugal casting high-carbon HSS roll were studied. Different microstructures and mechanical properties were obtained after the quenching and tempering temperatures of HSS roll were changed. With air-cooling and sodium silicate solution cooling, when the austenitizing temperature reaches 1273 K, the metallic matrix all transforms into the martensite. Afterwards, the eutectic carbides dissolve into the metallic matrix and their continuous network distribution changes into the broken network. The second hardening temperature of high-carbon HSS roll is around 793 K. No significant changes in tensile strength and elongation percentage are observed unless the tempering temperature is beyond 753 K. The tensile strength increases obviously and the elongation percentage decreases slightly beyond 753 K. However, the tensile strength decreases and the elongation percentage increases when the tempering temperature exceeds 813 K. When the tempering temperature excels 773 K, the impact toughness has a slight decrease. Tempering at 793-813 K, high-carbon HSS roll presents excellent abrasion resistance.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N9db4516ba2d94c809797747be09b6f66
14 Na3bfed722c5f4e84b236f482fc4a0b83
15 sg:journal.1042007
16 schema:keywords HSS roll
17 High-carbon high-speed steels
18 MC-type carbides
19 abrasion resistance
20 abrasion-resistant materials
21 austenitizing temperature
22 broken network
23 carbide
24 changes
25 continuous network distribution changes
26 cooling
27 decrease
28 different microstructures
29 distribution changes
30 effect
31 effects of quenching
32 elongation percentage
33 elongation percentage increases
34 eutectic carbides
35 excellent abrasion resistance
36 hardness MC-type carbide
37 hardness martensitic matrix
38 heat treatment
39 high hardness MC-type carbide
40 high hardness martensitic matrix
41 high-carbon HSS roll
42 high-speed steel
43 impact toughness
44 increase
45 investigation
46 martensite
47 martensitic matrix
48 materials
49 matrix
50 mechanical properties
51 metallic matrix
52 microstructure
53 network
54 network distribution changes
55 percentage
56 percentage increase
57 properties
58 quenching
59 resistance
60 roll
61 significant changes
62 silicate solution cooling
63 slight decrease
64 sodium silicate solution cooling
65 solution cooling
66 speed steel roll
67 steel
68 steel rolls
69 strength
70 strength decreases
71 temperature
72 tempering temperature
73 tensile strength
74 tensile strength decreases
75 toughness
76 treatment
77 schema:name Investigations on Heat Treatment of a High-Speed Steel Roll
78 schema:pagination 535-542
79 schema:productId N2a55660e72504035b1d098b55cb6e049
80 N2c9e57833b6b41a9a010ab169b55b6e8
81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039851306
82 https://doi.org/10.1007/s11665-007-9174-4
83 schema:sdDatePublished 2021-12-01T19:21
84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
85 schema:sdPublisher Nb57fb908900542dcbc448c8cf56262c1
86 schema:url https://doi.org/10.1007/s11665-007-9174-4
87 sgo:license sg:explorer/license/
88 sgo:sdDataset articles
89 rdf:type schema:ScholarlyArticle
90 N1e65505ed0594099aa9b3aa2f4c6d0ef schema:affiliation grid-institutes:None
91 schema:familyName Zhang
92 schema:givenName Yi
93 rdf:type schema:Person
94 N2a55660e72504035b1d098b55cb6e049 schema:name doi
95 schema:value 10.1007/s11665-007-9174-4
96 rdf:type schema:PropertyValue
97 N2c9e57833b6b41a9a010ab169b55b6e8 schema:name dimensions_id
98 schema:value pub.1039851306
99 rdf:type schema:PropertyValue
100 N42a396aec1fa477dae3e860bdcb588d8 rdf:first sg:person.016117416053.11
101 rdf:rest Nb54245ef95e64ba8a47c097afed40787
102 N7f8dbe4d67104b07866e87c0c152544b rdf:first sg:person.013310307055.06
103 rdf:rest Ne6d444545c2b4b1190d4c9d58be90657
104 N9db4516ba2d94c809797747be09b6f66 schema:volumeNumber 17
105 rdf:type schema:PublicationVolume
106 Na0fbbf03c8bc4cccad359ba97680e838 rdf:first sg:person.012136331417.76
107 rdf:rest Ne3547b6b713147d7bcdc40f71e5fab09
108 Na3bfed722c5f4e84b236f482fc4a0b83 schema:issueNumber 4
109 rdf:type schema:PublicationIssue
110 Nb54245ef95e64ba8a47c097afed40787 rdf:first sg:person.015233565657.13
111 rdf:rest N7f8dbe4d67104b07866e87c0c152544b
112 Nb57fb908900542dcbc448c8cf56262c1 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 Nc7b73c0d7b114e16accd7bd7a0f1eb8d rdf:first N1e65505ed0594099aa9b3aa2f4c6d0ef
115 rdf:rest rdf:nil
116 Ncf5d09b6114e4fab827c58c1f82d1e88 schema:affiliation grid-institutes:None
117 schema:familyName Li
118 schema:givenName Mingwei
119 rdf:type schema:Person
120 Ne3547b6b713147d7bcdc40f71e5fab09 rdf:first Ncf5d09b6114e4fab827c58c1f82d1e88
121 rdf:rest Nc7b73c0d7b114e16accd7bd7a0f1eb8d
122 Ne6d444545c2b4b1190d4c9d58be90657 rdf:first sg:person.016305177642.33
123 rdf:rest Na0fbbf03c8bc4cccad359ba97680e838
124 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
125 schema:name Engineering
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
128 schema:name Materials Engineering
129 rdf:type schema:DefinedTerm
130 sg:journal.1042007 schema:issn 1059-9495
131 1544-1024
132 schema:name Journal of Materials Engineering and Performance
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.012136331417.76 schema:affiliation grid-institutes:grid.43169.39
136 schema:familyName Jiang
137 schema:givenName Zhiqiang
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012136331417.76
139 rdf:type schema:Person
140 sg:person.013310307055.06 schema:affiliation grid-institutes:grid.43169.39
141 schema:familyName Xing
142 schema:givenName Jiandong
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013310307055.06
144 rdf:type schema:Person
145 sg:person.015233565657.13 schema:affiliation grid-institutes:grid.464495.e
146 schema:familyName Qu
147 schema:givenName Yinhu
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015233565657.13
149 rdf:type schema:Person
150 sg:person.016117416053.11 schema:affiliation grid-institutes:grid.43169.39
151 schema:familyName Fu
152 schema:givenName Hanguang
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016117416053.11
154 rdf:type schema:Person
155 sg:person.016305177642.33 schema:affiliation grid-institutes:grid.43169.39
156 schema:familyName Zhi
157 schema:givenName Xiaohui
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016305177642.33
159 rdf:type schema:Person
160 sg:pub.10.1007/978-1-4613-9535-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041607404
161 https://doi.org/10.1007/978-1-4613-9535-5
162 rdf:type schema:CreativeWork
163 sg:pub.10.1007/bf02833237 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007509819
164 https://doi.org/10.1007/bf02833237
165 rdf:type schema:CreativeWork
166 sg:pub.10.1007/s11661-005-0141-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019310525
167 https://doi.org/10.1007/s11661-005-0141-0
168 rdf:type schema:CreativeWork
169 grid-institutes:None schema:alternateName Chongqing Qhuanshen Harbor Machinery Manufacture Co. Ltd., 400045, Chongqing, P R China
170 schema:name Chongqing Qhuanshen Harbor Machinery Manufacture Co. Ltd., 400045, Chongqing, P R China
171 rdf:type schema:Organization
172 grid-institutes:grid.43169.39 schema:alternateName State Key Laboratory of Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, 710049, Xi’an, Shaanxi Province, P R China
173 schema:name Research Institute of Advance Materials Processing Technology, School of Materials Science and Engineering, Beijing University of Technology, 100022, Beijing, P R China
174 State Key Laboratory of Mechanical Behavior of Materials, School of Materials Science and Engineering, Xi’an Jiaotong University, 710049, Xi’an, Shaanxi Province, P R China
175 rdf:type schema:Organization
176 grid-institutes:grid.464495.e schema:alternateName School of Electromechanical Engineering, Xi’an Polytechnic University, 710048, Xi’an, Shaanxi Province, P R China
177 schema:name School of Electromechanical Engineering, Xi’an Polytechnic University, 710048, Xi’an, Shaanxi Province, P R China
178 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...