Analysis of Heat Affected Zone in Welded Aluminum Alloys Using Inverse and Direct Modeling View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-07-27

AUTHORS

A.D. Zervaki, G.N. Haidemenopoulos, S.G. Lambrakos

ABSTRACT

The concept of constructing parameter spaces for process control and the prediction of properties within the heat affected zone (HAZ) of welds using inverse modeling is examined. These parameter spaces can be, in principle, either independent or a function of weld process conditions. The construction of these parameter spaces consists of two procedures. One procedure entails calculation of a parameterized set of temperature histories using inverse heat transfer analysis of the heat deposition occurring during welding. The other procedure entails correlating these temperature histories with either a specific process control parameter or physical property of the weld that is measurable. Two quantitative case study analyses based on inverse modeling are presented. One analysis examines the calculation of temperature histories as a function of process control parameters. For this case, the specific process control parameter adopted as prototypical is the electron beam focal point. Another analysis compares some general characteristics of inverse and direct modeling with respect to the prediction of properties of the HAZ for deep penetration welding of aluminum alloys. For this case, the specific property adopted as prototypical is hardness. This study provides a foundation for an examination of the feasibility of constructing a parameter space for the prediction of weld properties using weld cross-section measurements that are independent of weld process conditions. More... »

PAGES

402-410

References to SciGraph publications

  • 1994-06. Computer simulation of diffusion in multiphase systems in METALLURGICAL AND MATERIALS TRANSACTIONS A
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11665-007-9145-9

    DOI

    http://dx.doi.org/10.1007/s11665-007-9145-9

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1049899741


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0910", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Manufacturing Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece", 
              "id": "http://www.grid.ac/institutes/grid.410558.d", 
              "name": [
                "Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zervaki", 
            "givenName": "A.D.", 
            "id": "sg:person.07420163560.19", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420163560.19"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece", 
              "id": "http://www.grid.ac/institutes/grid.410558.d", 
              "name": [
                "Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Haidemenopoulos", 
            "givenName": "G.N.", 
            "id": "sg:person.015521222033.93", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015521222033.93"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Materials Science and Technology Division, Code 6390, Naval Research Laboratory, 20375-5320, Washington, DC, USA", 
              "id": "http://www.grid.ac/institutes/grid.89170.37", 
              "name": [
                "Materials Science and Technology Division, Code 6390, Naval Research Laboratory, 20375-5320, Washington, DC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lambrakos", 
            "givenName": "S.G.", 
            "id": "sg:person.015722475453.27", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015722475453.27"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02652288", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051246350", 
              "https://doi.org/10.1007/bf02652288"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2007-07-27", 
        "datePublishedReg": "2007-07-27", 
        "description": "The concept of constructing parameter spaces for process control and the prediction of properties within the heat affected zone (HAZ) of welds using inverse modeling is examined. These parameter spaces can be, in principle, either independent or a function of weld process conditions. The construction of these parameter spaces consists of two procedures. One procedure entails calculation of a parameterized set of temperature histories using inverse heat transfer analysis of the heat deposition occurring during welding. The other procedure entails correlating these temperature histories with either a specific process control parameter or physical property of the weld that is measurable. Two quantitative case study analyses based on inverse modeling are presented. One analysis examines the calculation of temperature histories as a function of process control parameters. For this case, the specific process control parameter adopted as prototypical is the electron beam focal point. Another analysis compares some general characteristics of inverse and direct modeling with respect to the prediction of properties of the HAZ for deep penetration welding of aluminum alloys. For this case, the specific property adopted as prototypical is hardness. This study provides a foundation for an examination of the feasibility of constructing a parameter space for the prediction of weld properties using weld cross-section measurements that are independent of weld process conditions.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11665-007-9145-9", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1042007", 
            "issn": [
              "1059-9495", 
              "1544-1024"
            ], 
            "name": "Journal of Materials Engineering and Performance", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "17"
          }
        ], 
        "keywords": [
          "process control parameters", 
          "parameter space", 
          "weld process conditions", 
          "control parameters", 
          "aluminum alloy", 
          "temperature history", 
          "direct modeling", 
          "process conditions", 
          "prediction of properties", 
          "inverse modeling", 
          "inverse heat transfer analysis", 
          "zone of welds", 
          "Welded Aluminum Alloy", 
          "Heat Affected Zone", 
          "heat transfer analysis", 
          "deep penetration welding", 
          "beam focal point", 
          "weld properties", 
          "penetration welding", 
          "affected zone", 
          "quantitative case study analysis", 
          "transfer analysis", 
          "heat deposition", 
          "process control", 
          "welds", 
          "welding", 
          "inverse", 
          "alloy", 
          "space", 
          "physical properties", 
          "modeling", 
          "cross section measurements", 
          "specific properties", 
          "parameters", 
          "properties", 
          "calculations", 
          "HAZ", 
          "prediction", 
          "hardness", 
          "heat", 
          "zone", 
          "function", 
          "deposition", 
          "conditions", 
          "set", 
          "feasibility", 
          "procedure", 
          "prototypical", 
          "measurements", 
          "principles", 
          "cases", 
          "point", 
          "analysis", 
          "characteristics", 
          "construction", 
          "focal point", 
          "respect", 
          "general characteristics", 
          "concept", 
          "foundation", 
          "control", 
          "case study analysis", 
          "study", 
          "study analysis", 
          "history", 
          "examination"
        ], 
        "name": "Analysis of Heat Affected Zone in Welded Aluminum Alloys Using Inverse and Direct Modeling", 
        "pagination": "402-410", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1049899741"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11665-007-9145-9"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11665-007-9145-9", 
          "https://app.dimensions.ai/details/publication/pub.1049899741"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-11-24T20:53", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/article/article_441.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11665-007-9145-9"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-007-9145-9'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-007-9145-9'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-007-9145-9'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-007-9145-9'


     

    This table displays all metadata directly associated to this object as RDF triples.

    144 TRIPLES      21 PREDICATES      91 URIs      82 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11665-007-9145-9 schema:about anzsrc-for:09
    2 anzsrc-for:0910
    3 schema:author Nee5b3fc3f4564ce5892fbb0a4f894bec
    4 schema:citation sg:pub.10.1007/bf02652288
    5 schema:datePublished 2007-07-27
    6 schema:datePublishedReg 2007-07-27
    7 schema:description The concept of constructing parameter spaces for process control and the prediction of properties within the heat affected zone (HAZ) of welds using inverse modeling is examined. These parameter spaces can be, in principle, either independent or a function of weld process conditions. The construction of these parameter spaces consists of two procedures. One procedure entails calculation of a parameterized set of temperature histories using inverse heat transfer analysis of the heat deposition occurring during welding. The other procedure entails correlating these temperature histories with either a specific process control parameter or physical property of the weld that is measurable. Two quantitative case study analyses based on inverse modeling are presented. One analysis examines the calculation of temperature histories as a function of process control parameters. For this case, the specific process control parameter adopted as prototypical is the electron beam focal point. Another analysis compares some general characteristics of inverse and direct modeling with respect to the prediction of properties of the HAZ for deep penetration welding of aluminum alloys. For this case, the specific property adopted as prototypical is hardness. This study provides a foundation for an examination of the feasibility of constructing a parameter space for the prediction of weld properties using weld cross-section measurements that are independent of weld process conditions.
    8 schema:genre article
    9 schema:isAccessibleForFree false
    10 schema:isPartOf Nb35ac41ac95d4bb6930c68f895972c31
    11 Nb6a51536b8f14d609a5fe9fc85a4c539
    12 sg:journal.1042007
    13 schema:keywords HAZ
    14 Heat Affected Zone
    15 Welded Aluminum Alloy
    16 affected zone
    17 alloy
    18 aluminum alloy
    19 analysis
    20 beam focal point
    21 calculations
    22 case study analysis
    23 cases
    24 characteristics
    25 concept
    26 conditions
    27 construction
    28 control
    29 control parameters
    30 cross section measurements
    31 deep penetration welding
    32 deposition
    33 direct modeling
    34 examination
    35 feasibility
    36 focal point
    37 foundation
    38 function
    39 general characteristics
    40 hardness
    41 heat
    42 heat deposition
    43 heat transfer analysis
    44 history
    45 inverse
    46 inverse heat transfer analysis
    47 inverse modeling
    48 measurements
    49 modeling
    50 parameter space
    51 parameters
    52 penetration welding
    53 physical properties
    54 point
    55 prediction
    56 prediction of properties
    57 principles
    58 procedure
    59 process conditions
    60 process control
    61 process control parameters
    62 properties
    63 prototypical
    64 quantitative case study analysis
    65 respect
    66 set
    67 space
    68 specific properties
    69 study
    70 study analysis
    71 temperature history
    72 transfer analysis
    73 weld process conditions
    74 weld properties
    75 welding
    76 welds
    77 zone
    78 zone of welds
    79 schema:name Analysis of Heat Affected Zone in Welded Aluminum Alloys Using Inverse and Direct Modeling
    80 schema:pagination 402-410
    81 schema:productId Nbe3263d547e64f1cbf540caa8a505d3e
    82 Nc0f0d2321edf4561b8ee169bdefd869b
    83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049899741
    84 https://doi.org/10.1007/s11665-007-9145-9
    85 schema:sdDatePublished 2022-11-24T20:53
    86 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    87 schema:sdPublisher N18a0c097b7784ee9847d2725ed15e250
    88 schema:url https://doi.org/10.1007/s11665-007-9145-9
    89 sgo:license sg:explorer/license/
    90 sgo:sdDataset articles
    91 rdf:type schema:ScholarlyArticle
    92 N18a0c097b7784ee9847d2725ed15e250 schema:name Springer Nature - SN SciGraph project
    93 rdf:type schema:Organization
    94 Nb35ac41ac95d4bb6930c68f895972c31 schema:issueNumber 3
    95 rdf:type schema:PublicationIssue
    96 Nb4c5db05979e413c9c60e6acea0ec323 rdf:first sg:person.015722475453.27
    97 rdf:rest rdf:nil
    98 Nb6a51536b8f14d609a5fe9fc85a4c539 schema:volumeNumber 17
    99 rdf:type schema:PublicationVolume
    100 Nb8444ed7e1a54bef87e512b259608702 rdf:first sg:person.015521222033.93
    101 rdf:rest Nb4c5db05979e413c9c60e6acea0ec323
    102 Nbe3263d547e64f1cbf540caa8a505d3e schema:name doi
    103 schema:value 10.1007/s11665-007-9145-9
    104 rdf:type schema:PropertyValue
    105 Nc0f0d2321edf4561b8ee169bdefd869b schema:name dimensions_id
    106 schema:value pub.1049899741
    107 rdf:type schema:PropertyValue
    108 Nee5b3fc3f4564ce5892fbb0a4f894bec rdf:first sg:person.07420163560.19
    109 rdf:rest Nb8444ed7e1a54bef87e512b259608702
    110 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    111 schema:name Engineering
    112 rdf:type schema:DefinedTerm
    113 anzsrc-for:0910 schema:inDefinedTermSet anzsrc-for:
    114 schema:name Manufacturing Engineering
    115 rdf:type schema:DefinedTerm
    116 sg:journal.1042007 schema:issn 1059-9495
    117 1544-1024
    118 schema:name Journal of Materials Engineering and Performance
    119 schema:publisher Springer Nature
    120 rdf:type schema:Periodical
    121 sg:person.015521222033.93 schema:affiliation grid-institutes:grid.410558.d
    122 schema:familyName Haidemenopoulos
    123 schema:givenName G.N.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015521222033.93
    125 rdf:type schema:Person
    126 sg:person.015722475453.27 schema:affiliation grid-institutes:grid.89170.37
    127 schema:familyName Lambrakos
    128 schema:givenName S.G.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015722475453.27
    130 rdf:type schema:Person
    131 sg:person.07420163560.19 schema:affiliation grid-institutes:grid.410558.d
    132 schema:familyName Zervaki
    133 schema:givenName A.D.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07420163560.19
    135 rdf:type schema:Person
    136 sg:pub.10.1007/bf02652288 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051246350
    137 https://doi.org/10.1007/bf02652288
    138 rdf:type schema:CreativeWork
    139 grid-institutes:grid.410558.d schema:alternateName Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece
    140 schema:name Department of Mechanical Engineering, University of Thessaly, 38334, Volos, Greece
    141 rdf:type schema:Organization
    142 grid-institutes:grid.89170.37 schema:alternateName Materials Science and Technology Division, Code 6390, Naval Research Laboratory, 20375-5320, Washington, DC, USA
    143 schema:name Materials Science and Technology Division, Code 6390, Naval Research Laboratory, 20375-5320, Washington, DC, USA
    144 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...