Understanding the Influence of Copper Nanoparticles on Thermal Characteristics and Microstructural Development of a Tin-Silver Solder View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2007-05-16

AUTHORS

D.C. Lin, T.S. Srivatsan, G-X. Wang, R. Kovacevic

ABSTRACT

This paper presents and discusses issues relevant to solidification of a chosen lead-free solder, the eutectic Sn-3.5%Ag, and its composite counterparts. Direct temperature recordings for the no-clean solder paste during the simulated reflow process revealed a significant amount of undercooling to occur prior to the initiation of solidification of the eutectic Sn-3.5%Ag solder, which is 6.5 °C, and for the composite counterparts, it is dependent on the percentage of copper nanopowder. Temperature recordings revealed the same temperature level of 221 °C for both melting (from solid to liquid) and final solidification (after recalescence) of the Sn-3.5%Ag solder. Addition of copper nanoparticles was observed to have no appreciable influence on melting temperature of the composite solder. However, it does influence solidification of the composite solder. The addition of 0.5 wt.% copper nanoparticles lowered the solidification temperature to 219.5 °C, while addition of 1.0 wt.% copper nanoparticles lowered the solidification temperature to 217.5 °C, which is close to the melting point of the ternary eutectic Sn-Ag-Cu solder alloy, Sn-3.7Ag-0.9Cu. This indicates the copper nanoparticles are completely dissolved in the eutectic Sn-3.5%Ag solder and precipitate as the Cu6Sn5, which reinforces the eutectic solder. Optical microscopy observations revealed the addition of 1.0 wt.% of copper nanoparticles to the Sn-3.5%Ag solder results in the formation and presence of the intermetallic compound Cu6Sn5. These particles are polygonal in morphology and dispersed randomly through the solder matrix. Addition of microsized copper particles cannot completely dissolve in the eutectic solder and projects a sunflower morphology with the solid copper particle surrounded by the Cu6Sn5 intermetallic compound coupled with residual porosity present in the solder sample. Microhardness measurements revealed the addition of copper nanopowder to the eutectic Sn-3.5%Ag solder resulted in higher hardness. More... »

PAGES

647-654

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11665-007-9092-5

DOI

http://dx.doi.org/10.1007/s11665-007-9092-5

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023954989


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Research Center for Advanced Manufacturing, Department of Mechanical Engineering, 3101 Dyer Street, 75205, Dallas, TX, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Research Center for Advanced Manufacturing, Department of Mechanical Engineering, 3101 Dyer Street, 75205, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lin", 
        "givenName": "D.C.", 
        "id": "sg:person.07664144417.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07664144417.01"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 302 E. Buchtel Mall, 44325, Akron, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 302 E. Buchtel Mall, 44325, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Srivatsan", 
        "givenName": "T.S.", 
        "id": "sg:person.015440524245.80", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mechanical Engineering, The University of Akron, 302 E. Buchtel Mall, 44325, Akron, OH, USA", 
          "id": "http://www.grid.ac/institutes/grid.265881.0", 
          "name": [
            "Department of Mechanical Engineering, The University of Akron, 302 E. Buchtel Mall, 44325, Akron, OH, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wang", 
        "givenName": "G-X.", 
        "id": "sg:person.0700133674.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700133674.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Research Center for Advanced Manufacturing, Department of Mechanical Engineering, 3101 Dyer Street, 75205, Dallas, TX, USA", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Research Center for Advanced Manufacturing, Department of Mechanical Engineering, 3101 Dyer Street, 75205, Dallas, TX, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kovacevic", 
        "givenName": "R.", 
        "id": "sg:person.07647173057.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07647173057.91"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11664-004-0183-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029227396", 
          "https://doi.org/10.1007/s11664-004-0183-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-004-0131-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008020647", 
          "https://doi.org/10.1007/s11664-004-0131-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1011264527894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018608821", 
          "https://doi.org/10.1023/a:1011264527894"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1008968518512", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025848315", 
          "https://doi.org/10.1023/a:1008968518512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-000-0144-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034468177", 
          "https://doi.org/10.1007/s11837-000-0144-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02817353", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051238235", 
          "https://doi.org/10.1007/bf02817353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-000-0003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005303947", 
          "https://doi.org/10.1007/s11664-000-0003-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf03220718", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025223273", 
          "https://doi.org/10.1007/bf03220718"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-003-0142-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048486273", 
          "https://doi.org/10.1007/s11837-003-0142-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11837-003-0242-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040531267", 
          "https://doi.org/10.1007/s11837-003-0242-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007-05-16", 
    "datePublishedReg": "2007-05-16", 
    "description": "This paper presents and discusses issues relevant to solidification of a chosen lead-free solder, the eutectic Sn-3.5%Ag, and its composite counterparts. Direct temperature recordings for the no-clean solder paste during the simulated reflow process revealed a significant amount of undercooling to occur prior to the initiation of solidification of the eutectic Sn-3.5%Ag solder, which is 6.5\u00a0\u00b0C, and for the composite counterparts, it is dependent on the percentage of copper nanopowder. Temperature recordings revealed the same temperature level of 221\u00a0\u00b0C for both melting (from solid to liquid) and final solidification (after recalescence) of the Sn-3.5%Ag solder. Addition of copper nanoparticles was observed to have no appreciable influence on melting temperature of the composite solder. However, it does influence solidification of the composite solder. The addition of 0.5\u00a0wt.% copper nanoparticles lowered the solidification temperature to 219.5\u00a0\u00b0C, while addition of 1.0\u00a0wt.% copper nanoparticles lowered the solidification temperature to 217.5\u00a0\u00b0C, which is close to the melting point of the ternary eutectic Sn-Ag-Cu solder alloy, Sn-3.7Ag-0.9Cu. This indicates the copper nanoparticles are completely dissolved in the eutectic Sn-3.5%Ag solder and precipitate as the Cu6Sn5, which reinforces the eutectic solder. Optical microscopy observations revealed the addition of 1.0\u00a0wt.% of copper nanoparticles to the Sn-3.5%Ag solder results in the formation and presence of the intermetallic compound Cu6Sn5. These particles are polygonal in morphology and dispersed randomly through the solder matrix. Addition of microsized copper particles cannot completely dissolve in the eutectic solder and projects a sunflower morphology with the solid copper particle surrounded by the Cu6Sn5 intermetallic compound coupled with residual porosity present in the solder sample. Microhardness measurements revealed the addition of copper nanopowder to the eutectic Sn-3.5%Ag solder resulted in higher hardness.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11665-007-9092-5", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3017329", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1042007", 
        "issn": [
          "1059-9495", 
          "1544-1024"
        ], 
        "name": "Journal of Materials Engineering and Performance", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "16"
      }
    ], 
    "keywords": [
      "composite counterparts", 
      "composite solder", 
      "eutectic solder", 
      "tin-silver solder", 
      "ternary eutectic Sn-Ag", 
      "solidification temperature", 
      "copper particles", 
      "lead-free solders", 
      "solid copper particles", 
      "initiation of solidification", 
      "copper nanopowders", 
      "eutectic Sn-Ag", 
      "Cu solder alloy", 
      "Cu6Sn5 intermetallic compounds", 
      "Sn-Ag", 
      "same temperature level", 
      "copper nanoparticles", 
      "solder alloy", 
      "residual porosity", 
      "high hardness", 
      "reflow process", 
      "microstructural development", 
      "optical microscopy observations", 
      "solder paste", 
      "solder matrix", 
      "clean solder paste", 
      "intermetallic compound Cu6Sn5", 
      "solder samples", 
      "microhardness measurements", 
      "thermal characteristics", 
      "solder", 
      "solidification", 
      "temperature levels", 
      "intermetallic compounds", 
      "temperature recordings", 
      "final solidification", 
      "compound Cu6Sn5", 
      "microscopy observations", 
      "melting point", 
      "nanopowders", 
      "Cu6Sn5", 
      "particles", 
      "nanoparticles", 
      "temperature", 
      "wt", 
      "alloy", 
      "appreciable influence", 
      "porosity", 
      "hardness", 
      "paste", 
      "morphology", 
      "precipitates", 
      "influence", 
      "significant amount", 
      "melting", 
      "matrix", 
      "measurements", 
      "addition", 
      "characteristics", 
      "process", 
      "amount", 
      "formation", 
      "counterparts", 
      "point", 
      "observations", 
      "discusses issues", 
      "recordings", 
      "samples", 
      "development", 
      "issues", 
      "initiation", 
      "presence", 
      "compounds", 
      "percentage", 
      "levels", 
      "paper", 
      "Direct temperature recordings", 
      "simulated reflow process", 
      "influence solidification", 
      "sunflower morphology"
    ], 
    "name": "Understanding the Influence of Copper Nanoparticles on Thermal Characteristics and Microstructural Development of a Tin-Silver Solder", 
    "pagination": "647-654", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023954989"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11665-007-9092-5"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11665-007-9092-5", 
      "https://app.dimensions.ai/details/publication/pub.1023954989"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_441.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11665-007-9092-5"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11665-007-9092-5'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11665-007-9092-5'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11665-007-9092-5'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11665-007-9092-5'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      22 PREDICATES      115 URIs      97 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11665-007-9092-5 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N75c100e69e1e4635b5acd10bb8908095
4 schema:citation sg:pub.10.1007/bf02817353
5 sg:pub.10.1007/bf03220718
6 sg:pub.10.1007/s11664-000-0003-x
7 sg:pub.10.1007/s11664-004-0131-9
8 sg:pub.10.1007/s11664-004-0183-x
9 sg:pub.10.1007/s11837-000-0144-7
10 sg:pub.10.1007/s11837-003-0142-7
11 sg:pub.10.1007/s11837-003-0242-4
12 sg:pub.10.1023/a:1008968518512
13 sg:pub.10.1023/a:1011264527894
14 schema:datePublished 2007-05-16
15 schema:datePublishedReg 2007-05-16
16 schema:description This paper presents and discusses issues relevant to solidification of a chosen lead-free solder, the eutectic Sn-3.5%Ag, and its composite counterparts. Direct temperature recordings for the no-clean solder paste during the simulated reflow process revealed a significant amount of undercooling to occur prior to the initiation of solidification of the eutectic Sn-3.5%Ag solder, which is 6.5 °C, and for the composite counterparts, it is dependent on the percentage of copper nanopowder. Temperature recordings revealed the same temperature level of 221 °C for both melting (from solid to liquid) and final solidification (after recalescence) of the Sn-3.5%Ag solder. Addition of copper nanoparticles was observed to have no appreciable influence on melting temperature of the composite solder. However, it does influence solidification of the composite solder. The addition of 0.5 wt.% copper nanoparticles lowered the solidification temperature to 219.5 °C, while addition of 1.0 wt.% copper nanoparticles lowered the solidification temperature to 217.5 °C, which is close to the melting point of the ternary eutectic Sn-Ag-Cu solder alloy, Sn-3.7Ag-0.9Cu. This indicates the copper nanoparticles are completely dissolved in the eutectic Sn-3.5%Ag solder and precipitate as the Cu6Sn5, which reinforces the eutectic solder. Optical microscopy observations revealed the addition of 1.0 wt.% of copper nanoparticles to the Sn-3.5%Ag solder results in the formation and presence of the intermetallic compound Cu6Sn5. These particles are polygonal in morphology and dispersed randomly through the solder matrix. Addition of microsized copper particles cannot completely dissolve in the eutectic solder and projects a sunflower morphology with the solid copper particle surrounded by the Cu6Sn5 intermetallic compound coupled with residual porosity present in the solder sample. Microhardness measurements revealed the addition of copper nanopowder to the eutectic Sn-3.5%Ag solder resulted in higher hardness.
17 schema:genre article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N2b5d92b291cf448586f3fde457a3e8cd
21 N510240aefbb64099b61ba2c3d6fbcec8
22 sg:journal.1042007
23 schema:keywords Cu solder alloy
24 Cu6Sn5
25 Cu6Sn5 intermetallic compounds
26 Direct temperature recordings
27 Sn-Ag
28 addition
29 alloy
30 amount
31 appreciable influence
32 characteristics
33 clean solder paste
34 composite counterparts
35 composite solder
36 compound Cu6Sn5
37 compounds
38 copper nanoparticles
39 copper nanopowders
40 copper particles
41 counterparts
42 development
43 discusses issues
44 eutectic Sn-Ag
45 eutectic solder
46 final solidification
47 formation
48 hardness
49 high hardness
50 influence
51 influence solidification
52 initiation
53 initiation of solidification
54 intermetallic compound Cu6Sn5
55 intermetallic compounds
56 issues
57 lead-free solders
58 levels
59 matrix
60 measurements
61 melting
62 melting point
63 microhardness measurements
64 microscopy observations
65 microstructural development
66 morphology
67 nanoparticles
68 nanopowders
69 observations
70 optical microscopy observations
71 paper
72 particles
73 paste
74 percentage
75 point
76 porosity
77 precipitates
78 presence
79 process
80 recordings
81 reflow process
82 residual porosity
83 same temperature level
84 samples
85 significant amount
86 simulated reflow process
87 solder
88 solder alloy
89 solder matrix
90 solder paste
91 solder samples
92 solid copper particles
93 solidification
94 solidification temperature
95 sunflower morphology
96 temperature
97 temperature levels
98 temperature recordings
99 ternary eutectic Sn-Ag
100 thermal characteristics
101 tin-silver solder
102 wt
103 schema:name Understanding the Influence of Copper Nanoparticles on Thermal Characteristics and Microstructural Development of a Tin-Silver Solder
104 schema:pagination 647-654
105 schema:productId N6374f93202cd4e59a5d4aa495022f7ea
106 Nac2df4532ac444f8b25b2461c6476944
107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023954989
108 https://doi.org/10.1007/s11665-007-9092-5
109 schema:sdDatePublished 2021-11-01T18:10
110 schema:sdLicense https://scigraph.springernature.com/explorer/license/
111 schema:sdPublisher N8211fd0342fd4e9c81938c8281ccecb8
112 schema:url https://doi.org/10.1007/s11665-007-9092-5
113 sgo:license sg:explorer/license/
114 sgo:sdDataset articles
115 rdf:type schema:ScholarlyArticle
116 N2b5d92b291cf448586f3fde457a3e8cd schema:volumeNumber 16
117 rdf:type schema:PublicationVolume
118 N3406790b037d4cb5abb222655f716c17 rdf:first sg:person.0700133674.00
119 rdf:rest N3cfecdff998c4ea689cb49196b75e9fe
120 N3cfecdff998c4ea689cb49196b75e9fe rdf:first sg:person.07647173057.91
121 rdf:rest rdf:nil
122 N510240aefbb64099b61ba2c3d6fbcec8 schema:issueNumber 5
123 rdf:type schema:PublicationIssue
124 N6374f93202cd4e59a5d4aa495022f7ea schema:name doi
125 schema:value 10.1007/s11665-007-9092-5
126 rdf:type schema:PropertyValue
127 N75c100e69e1e4635b5acd10bb8908095 rdf:first sg:person.07664144417.01
128 rdf:rest Nb01c6d07c6ec480b8b9dd540f10f41a0
129 N8211fd0342fd4e9c81938c8281ccecb8 schema:name Springer Nature - SN SciGraph project
130 rdf:type schema:Organization
131 Nac2df4532ac444f8b25b2461c6476944 schema:name dimensions_id
132 schema:value pub.1023954989
133 rdf:type schema:PropertyValue
134 Nb01c6d07c6ec480b8b9dd540f10f41a0 rdf:first sg:person.015440524245.80
135 rdf:rest N3406790b037d4cb5abb222655f716c17
136 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
137 schema:name Engineering
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
140 schema:name Materials Engineering
141 rdf:type schema:DefinedTerm
142 sg:grant.3017329 http://pending.schema.org/fundedItem sg:pub.10.1007/s11665-007-9092-5
143 rdf:type schema:MonetaryGrant
144 sg:journal.1042007 schema:issn 1059-9495
145 1544-1024
146 schema:name Journal of Materials Engineering and Performance
147 schema:publisher Springer Nature
148 rdf:type schema:Periodical
149 sg:person.015440524245.80 schema:affiliation grid-institutes:grid.265881.0
150 schema:familyName Srivatsan
151 schema:givenName T.S.
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440524245.80
153 rdf:type schema:Person
154 sg:person.0700133674.00 schema:affiliation grid-institutes:grid.265881.0
155 schema:familyName Wang
156 schema:givenName G-X.
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0700133674.00
158 rdf:type schema:Person
159 sg:person.07647173057.91 schema:affiliation grid-institutes:None
160 schema:familyName Kovacevic
161 schema:givenName R.
162 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07647173057.91
163 rdf:type schema:Person
164 sg:person.07664144417.01 schema:affiliation grid-institutes:None
165 schema:familyName Lin
166 schema:givenName D.C.
167 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07664144417.01
168 rdf:type schema:Person
169 sg:pub.10.1007/bf02817353 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051238235
170 https://doi.org/10.1007/bf02817353
171 rdf:type schema:CreativeWork
172 sg:pub.10.1007/bf03220718 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025223273
173 https://doi.org/10.1007/bf03220718
174 rdf:type schema:CreativeWork
175 sg:pub.10.1007/s11664-000-0003-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005303947
176 https://doi.org/10.1007/s11664-000-0003-x
177 rdf:type schema:CreativeWork
178 sg:pub.10.1007/s11664-004-0131-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008020647
179 https://doi.org/10.1007/s11664-004-0131-9
180 rdf:type schema:CreativeWork
181 sg:pub.10.1007/s11664-004-0183-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1029227396
182 https://doi.org/10.1007/s11664-004-0183-x
183 rdf:type schema:CreativeWork
184 sg:pub.10.1007/s11837-000-0144-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034468177
185 https://doi.org/10.1007/s11837-000-0144-7
186 rdf:type schema:CreativeWork
187 sg:pub.10.1007/s11837-003-0142-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048486273
188 https://doi.org/10.1007/s11837-003-0142-7
189 rdf:type schema:CreativeWork
190 sg:pub.10.1007/s11837-003-0242-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040531267
191 https://doi.org/10.1007/s11837-003-0242-4
192 rdf:type schema:CreativeWork
193 sg:pub.10.1023/a:1008968518512 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025848315
194 https://doi.org/10.1023/a:1008968518512
195 rdf:type schema:CreativeWork
196 sg:pub.10.1023/a:1011264527894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018608821
197 https://doi.org/10.1023/a:1011264527894
198 rdf:type schema:CreativeWork
199 grid-institutes:None schema:alternateName Research Center for Advanced Manufacturing, Department of Mechanical Engineering, 3101 Dyer Street, 75205, Dallas, TX, USA
200 schema:name Research Center for Advanced Manufacturing, Department of Mechanical Engineering, 3101 Dyer Street, 75205, Dallas, TX, USA
201 rdf:type schema:Organization
202 grid-institutes:grid.265881.0 schema:alternateName Department of Mechanical Engineering, The University of Akron, 302 E. Buchtel Mall, 44325, Akron, OH, USA
203 schema:name Department of Mechanical Engineering, The University of Akron, 302 E. Buchtel Mall, 44325, Akron, OH, USA
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...