Magnetic resonance studies of InGaN-based quantum well diodes View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-03

AUTHORS

W. E. Carlos, E. R. Glaser, T. A. Kennedy, Shuji Nakamura

ABSTRACT

Photoluminescence (PL) based optically detected magnetic resonance (ODMR) studies as well as electroluminescence detected and electrically detected magnetic resonance (ELDMR and EDMR, respectively) measurements of InxGa1−xN quantum wells were performed. In the ODMR, two PL-enhancing resonances were observed: an electron resonance and a hole resonance. The electron resonance is consistent with expectations for the g value in bulk InxGa1−xN for x ≈ 0.4 but deviates significantly in an x≈0.3 sample. Possible reasons for this include the effects of strain and confinement. The hole resonance is qualitatively similar to observations in Mg-doped GaN, but more isotropic in the x ≈ 0.3 diode than in the x ≈ 0.4 sample. We measure relatively long radiative lifetimes (as long as ∼0.2 ms) in the ODMR which facilitate the observation of the resonances and indicate that the electron and hole are spatially separated either by potential fluctuations within the quantum well or by the trapping of the hole at an acceptor in the player of AlGaN whch serves as one of the confining barriers. In the EDMR and ELDMR experiments, the signal is primarily due to a reduction in the nonradiative recombination at resonance. While the ODMR is alwyas emission-enhancing, the ELDMR is luminescence-quenching, supporting the notion that techniques are probing different centers. More... »

PAGES

252-256

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-999-0023-0

DOI

http://dx.doi.org/10.1007/s11664-999-0023-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1022570023


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "United States Naval Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Naval Research Laboratory, 20375, Washington, D.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Carlos", 
        "givenName": "W. E.", 
        "id": "sg:person.016372411105.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016372411105.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Naval Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Naval Research Laboratory, 20375, Washington, D.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glaser", 
        "givenName": "E. R.", 
        "id": "sg:person.015325601101.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015325601101.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Naval Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Naval Research Laboratory, 20375, Washington, D.C."
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kennedy", 
        "givenName": "T. A.", 
        "id": "sg:person.015345506307.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345506307.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Nichia Chemical Industries Ltd., 491 Oka, Kaminaka Anan, 774, Tokushima, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nakamura", 
        "givenName": "Shuji", 
        "id": "sg:person.015011275135.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015011275135.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/b978-0-444-86741-4.50016-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007975804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.111832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010330194"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1101(94)90272-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040494362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1101(94)90272-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040494362"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0038-1101(96)00164-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049911939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(60)90105-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052363947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(60)90105-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052363947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.114350", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057671375"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.116981", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057681189"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.117390", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057681598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.118767", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057682962"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.118778", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057682973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.121072", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057685245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.122693", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057686850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.17841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.17841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568099"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.17878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.48.17878", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060568105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.13326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060575186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.51.13326", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060575186"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.16702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060577844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.52.16702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060577844"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.258-263.1105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072107194"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-03", 
    "datePublishedReg": "1999-03-01", 
    "description": "Photoluminescence (PL) based optically detected magnetic resonance (ODMR) studies as well as electroluminescence detected and electrically detected magnetic resonance (ELDMR and EDMR, respectively) measurements of InxGa1\u2212xN quantum wells were performed. In the ODMR, two PL-enhancing resonances were observed: an electron resonance and a hole resonance. The electron resonance is consistent with expectations for the g value in bulk InxGa1\u2212xN for x \u2248 0.4 but deviates significantly in an x\u22480.3 sample. Possible reasons for this include the effects of strain and confinement. The hole resonance is qualitatively similar to observations in Mg-doped GaN, but more isotropic in the x \u2248 0.3 diode than in the x \u2248 0.4 sample. We measure relatively long radiative lifetimes (as long as \u223c0.2 ms) in the ODMR which facilitate the observation of the resonances and indicate that the electron and hole are spatially separated either by potential fluctuations within the quantum well or by the trapping of the hole at an acceptor in the player of AlGaN whch serves as one of the confining barriers. In the EDMR and ELDMR experiments, the signal is primarily due to a reduction in the nonradiative recombination at resonance. While the ODMR is alwyas emission-enhancing, the ELDMR is luminescence-quenching, supporting the notion that techniques are probing different centers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11664-999-0023-0", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Magnetic resonance studies of InGaN-based quantum well diodes", 
    "pagination": "252-256", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6b874941b7ab0c4f8865a6f8e6d6d0c57c0455ba186eac2b0dd4a562eb934542"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-999-0023-0"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1022570023"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-999-0023-0", 
      "https://app.dimensions.ai/details/publication/pub.1022570023"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000365_0000000365/records_71674_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11664-999-0023-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-999-0023-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-999-0023-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-999-0023-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-999-0023-0'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-999-0023-0 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nd4504f44ca6448cd8d999e51fb64970f
4 schema:citation https://doi.org/10.1016/0022-3697(60)90105-0
5 https://doi.org/10.1016/0038-1101(94)90272-0
6 https://doi.org/10.1016/b978-0-444-86741-4.50016-0
7 https://doi.org/10.1016/s0038-1101(96)00164-5
8 https://doi.org/10.1063/1.111832
9 https://doi.org/10.1063/1.114350
10 https://doi.org/10.1063/1.116981
11 https://doi.org/10.1063/1.117390
12 https://doi.org/10.1063/1.118767
13 https://doi.org/10.1063/1.118778
14 https://doi.org/10.1063/1.121072
15 https://doi.org/10.1063/1.122693
16 https://doi.org/10.1103/physrevb.48.17841
17 https://doi.org/10.1103/physrevb.48.17878
18 https://doi.org/10.1103/physrevb.51.13326
19 https://doi.org/10.1103/physrevb.52.16702
20 https://doi.org/10.4028/www.scientific.net/msf.258-263.1105
21 schema:datePublished 1999-03
22 schema:datePublishedReg 1999-03-01
23 schema:description Photoluminescence (PL) based optically detected magnetic resonance (ODMR) studies as well as electroluminescence detected and electrically detected magnetic resonance (ELDMR and EDMR, respectively) measurements of InxGa1−xN quantum wells were performed. In the ODMR, two PL-enhancing resonances were observed: an electron resonance and a hole resonance. The electron resonance is consistent with expectations for the g value in bulk InxGa1−xN for x ≈ 0.4 but deviates significantly in an x≈0.3 sample. Possible reasons for this include the effects of strain and confinement. The hole resonance is qualitatively similar to observations in Mg-doped GaN, but more isotropic in the x ≈ 0.3 diode than in the x ≈ 0.4 sample. We measure relatively long radiative lifetimes (as long as ∼0.2 ms) in the ODMR which facilitate the observation of the resonances and indicate that the electron and hole are spatially separated either by potential fluctuations within the quantum well or by the trapping of the hole at an acceptor in the player of AlGaN whch serves as one of the confining barriers. In the EDMR and ELDMR experiments, the signal is primarily due to a reduction in the nonradiative recombination at resonance. While the ODMR is alwyas emission-enhancing, the ELDMR is luminescence-quenching, supporting the notion that techniques are probing different centers.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf N8394682f18ca4424b8730872ba5a9318
28 N977ee62f7a3a4326966c83b080a87318
29 sg:journal.1136213
30 schema:name Magnetic resonance studies of InGaN-based quantum well diodes
31 schema:pagination 252-256
32 schema:productId N3dccfe70ed5c40f09606e5224f43f76e
33 N75a04542192c4dd6ac1b901a6e0c0468
34 Nc98dfcb1216840d5b9ba1e04139fab6a
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022570023
36 https://doi.org/10.1007/s11664-999-0023-0
37 schema:sdDatePublished 2019-04-11T12:57
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nb1ce8c45e995474c8efc08ad060742bb
40 schema:url http://link.springer.com/10.1007%2Fs11664-999-0023-0
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N0d15802695c44c3681f56b1b2e0e383d schema:name Nichia Chemical Industries Ltd., 491 Oka, Kaminaka Anan, 774, Tokushima, Japan
45 rdf:type schema:Organization
46 N101e4f9a3a1640be8e977e6e1859a971 rdf:first sg:person.015011275135.10
47 rdf:rest rdf:nil
48 N3dccfe70ed5c40f09606e5224f43f76e schema:name dimensions_id
49 schema:value pub.1022570023
50 rdf:type schema:PropertyValue
51 N75a04542192c4dd6ac1b901a6e0c0468 schema:name readcube_id
52 schema:value 6b874941b7ab0c4f8865a6f8e6d6d0c57c0455ba186eac2b0dd4a562eb934542
53 rdf:type schema:PropertyValue
54 N8394682f18ca4424b8730872ba5a9318 schema:volumeNumber 28
55 rdf:type schema:PublicationVolume
56 N977ee62f7a3a4326966c83b080a87318 schema:issueNumber 3
57 rdf:type schema:PublicationIssue
58 Nb1ce8c45e995474c8efc08ad060742bb schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 Nc98dfcb1216840d5b9ba1e04139fab6a schema:name doi
61 schema:value 10.1007/s11664-999-0023-0
62 rdf:type schema:PropertyValue
63 Nd4504f44ca6448cd8d999e51fb64970f rdf:first sg:person.016372411105.55
64 rdf:rest Ndee6c837d64347edbfb2f4cc5414fecc
65 Ndee6c837d64347edbfb2f4cc5414fecc rdf:first sg:person.015325601101.86
66 rdf:rest Ndeeb5707521b405880870e252ccc8134
67 Ndeeb5707521b405880870e252ccc8134 rdf:first sg:person.015345506307.69
68 rdf:rest N101e4f9a3a1640be8e977e6e1859a971
69 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
70 schema:name Physical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
73 schema:name Other Physical Sciences
74 rdf:type schema:DefinedTerm
75 sg:journal.1136213 schema:issn 0361-5235
76 1543-186X
77 schema:name Journal of Electronic Materials
78 rdf:type schema:Periodical
79 sg:person.015011275135.10 schema:affiliation N0d15802695c44c3681f56b1b2e0e383d
80 schema:familyName Nakamura
81 schema:givenName Shuji
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015011275135.10
83 rdf:type schema:Person
84 sg:person.015325601101.86 schema:affiliation https://www.grid.ac/institutes/grid.89170.37
85 schema:familyName Glaser
86 schema:givenName E. R.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015325601101.86
88 rdf:type schema:Person
89 sg:person.015345506307.69 schema:affiliation https://www.grid.ac/institutes/grid.89170.37
90 schema:familyName Kennedy
91 schema:givenName T. A.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015345506307.69
93 rdf:type schema:Person
94 sg:person.016372411105.55 schema:affiliation https://www.grid.ac/institutes/grid.89170.37
95 schema:familyName Carlos
96 schema:givenName W. E.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016372411105.55
98 rdf:type schema:Person
99 https://doi.org/10.1016/0022-3697(60)90105-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052363947
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/0038-1101(94)90272-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040494362
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/b978-0-444-86741-4.50016-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007975804
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/s0038-1101(96)00164-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049911939
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.111832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010330194
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1063/1.114350 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057671375
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1063/1.116981 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057681189
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.117390 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057681598
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.118767 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057682962
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1063/1.118778 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057682973
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1063/1.121072 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057685245
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1063/1.122693 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057686850
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physrevb.48.17841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568099
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.48.17878 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060568105
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physrevb.51.13326 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060575186
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physrevb.52.16702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060577844
130 rdf:type schema:CreativeWork
131 https://doi.org/10.4028/www.scientific.net/msf.258-263.1105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072107194
132 rdf:type schema:CreativeWork
133 https://www.grid.ac/institutes/grid.89170.37 schema:alternateName United States Naval Research Laboratory
134 schema:name Naval Research Laboratory, 20375, Washington, D.C.
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...