Changes of the Physical Properties of Sputtered InGaN Thin Films Under Small Nitrogen Gas Flow Variations View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-05

AUTHORS

Erman Erdoğan, Mutlu Kundakçı

ABSTRACT

In this research work, InGaN triple compound was grown under low nitrogen gas flows by using the sputtering technique. The structural, optical and morphological characteristics of the InGaN compound have been studied in detail. X-ray diffraction (XRD) and Raman for structural analysis; absorption measurement technique for optical properties; scanning electron microscopy and atomic force microscopy (AFM) measurement techniques were used for the study of the morphological characteristics. In the XRD analysis, the film deposited at 0 sccm gas flow exhibits a (0002) peak of InN, (0002) and (10–11) peaks of GaN. Other films show dendritic structure. In the Raman analysis, the optical phonon modes of the InGaN compound are A1(LO) and E2(high). Optical band gaps are found to be 2.57 eV, 2.54 eV, 3.03 eV and 2.93 eV for 0–0.4–0.8–1.2 sccm, respectively. These changes are ascribed to the degraded crystallinity of the grown films at high nitrogen flow rates. The surface morphology of the InGaN films grown at 0 sccm displays clusters of near-spherical-shaped nanoparticles over the surface. In the results of the AFM, the surface topography of the InGaN thin films deposited with lower nitrogen content exhibited fewer grains on the surface, especially on 0.4 sccm gas flow rate. The number of grains increased with higher N2 gas flow rates. The surface roughness of the films decreased with increasing N2 gas flows. It is clear that surface morphology of the films depends on the gas flow rate very much. Due to their morphological properties, we can say that they are suitable structures for optoelectronic applications and friction applications in engineering. We can also say that films with a hexagonal crystal structure and different optical band gaps can be used in device applications such as LED, laser diode and power electronics. More... »

PAGES

1-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-019-07042-8

DOI

http://dx.doi.org/10.1007/s11664-019-07042-8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112093307


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Mu\u015f Alparslan University", 
          "id": "https://www.grid.ac/institutes/grid.449204.f", 
          "name": [
            "Department of Electrical & Electronics Engineering, Mu\u015f Alparslan University, 49250, Mu\u015f, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erdo\u011fan", 
        "givenName": "Erman", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Atat\u00fcrk University", 
          "id": "https://www.grid.ac/institutes/grid.411445.1", 
          "name": [
            "Department of Physics, Atat\u00fcrk University, 25240, Erzurum, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kundak\u00e7\u0131", 
        "givenName": "Mutlu", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2015.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000377722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2015.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000377722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2015.02.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000377722"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2017.01.077", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002155998"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1186/1556-276x-9-334", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002550447", 
          "https://doi.org/10.1186/1556-276x-9-334"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.saa.2013.09.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005473810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ra02440h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010271731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/16/12/r01", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010501535"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amr.829.497", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010803924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.vacuum.2013.12.009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011031329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s12034-012-0344-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013903723", 
          "https://doi.org/10.1007/s12034-012-0344-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsf.2009.12.060", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014047576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2010.10.050", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014901217"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2012.10.202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019110991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsf.2013.11.117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021275003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-014-3494-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022254328", 
          "https://doi.org/10.1007/s11664-014-3494-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physb.2012.06.028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023098612"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2320/matertrans.m2014089", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024544947"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jnoncrysol.2012.01.023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024629488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.tsf.2012.06.024", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027304297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.triboint.2015.02.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027608003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2015.02.015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032738587"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2109/jcersj2.118.152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035197027"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3938/jkps.66.978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038591681", 
          "https://doi.org/10.3938/jkps.66.978"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0042-207x(99)00189-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039564986"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.microrel.2010.01.042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039872485"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-013-2635-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050046406", 
          "https://doi.org/10.1007/s11664-013-2635-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.triboint.2003.11.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050778842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2016.03.247", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051309023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.surfcoat.2011.09.062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053265694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/matecconf/20166704013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057036542"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/matecconf/20166704015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057036544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1368156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057699617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3202409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057918562"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4624/19/2/304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059089245"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/2053-1591/3/10/106406", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059183104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1143/jjap.49.081203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063085359"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-017-5608-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085869809", 
          "https://doi.org/10.1007/s11664-017-5608-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-017-5608-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085869809", 
          "https://doi.org/10.1007/s11664-017-5608-4"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2017.12.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1099650597"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-05", 
    "datePublishedReg": "2019-05-01", 
    "description": "In this research work, InGaN triple compound was grown under low nitrogen gas flows by using the sputtering technique. The structural, optical and morphological characteristics of the InGaN compound have been studied in detail. X-ray diffraction (XRD) and Raman for structural analysis; absorption measurement technique for optical properties; scanning electron microscopy and atomic force microscopy (AFM) measurement techniques were used for the study of the morphological characteristics. In the XRD analysis, the film deposited at 0 sccm gas flow exhibits a (0002) peak of InN, (0002) and (10\u201311) peaks of GaN. Other films show dendritic structure. In the Raman analysis, the optical phonon modes of the InGaN compound are A1(LO) and E2(high). Optical band gaps are found to be 2.57 eV, 2.54 eV, 3.03 eV and 2.93 eV for 0\u20130.4\u20130.8\u20131.2 sccm, respectively. These changes are ascribed to the degraded crystallinity of the grown films at high nitrogen flow rates. The surface morphology of the InGaN films grown at 0 sccm displays clusters of near-spherical-shaped nanoparticles over the surface. In the results of the AFM, the surface topography of the InGaN thin films deposited with lower nitrogen content exhibited fewer grains on the surface, especially on 0.4 sccm gas flow rate. The number of grains increased with higher N2 gas flow rates. The surface roughness of the films decreased with increasing N2 gas flows. It is clear that surface morphology of the films depends on the gas flow rate very much. Due to their morphological properties, we can say that they are suitable structures for optoelectronic applications and friction applications in engineering. We can also say that films with a hexagonal crystal structure and different optical band gaps can be used in device applications such as LED, laser diode and power electronics.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11664-019-07042-8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Changes of the Physical Properties of Sputtered InGaN Thin Films Under Small Nitrogen Gas Flow Variations", 
    "pagination": "1-8", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c7a990f917d0627c1285720b42aed5a0359c2c690e123c7b2a6a5f351a25184b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-019-07042-8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112093307"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-019-07042-8", 
      "https://app.dimensions.ai/details/publication/pub.1112093307"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T14:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000372_0000000372/records_117128_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11664-019-07042-8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-019-07042-8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-019-07042-8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-019-07042-8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-019-07042-8'


 

This table displays all metadata directly associated to this object as RDF triples.

186 TRIPLES      21 PREDICATES      64 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-019-07042-8 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N78738843e55b467ea0db88875786e2af
4 schema:citation sg:pub.10.1007/s11664-013-2635-7
5 sg:pub.10.1007/s11664-014-3494-6
6 sg:pub.10.1007/s11664-017-5608-4
7 sg:pub.10.1007/s12034-012-0344-0
8 sg:pub.10.1186/1556-276x-9-334
9 sg:pub.10.3938/jkps.66.978
10 https://doi.org/10.1016/j.apsusc.2012.10.202
11 https://doi.org/10.1016/j.jallcom.2016.03.247
12 https://doi.org/10.1016/j.jallcom.2017.01.077
13 https://doi.org/10.1016/j.jcrysgro.2010.10.050
14 https://doi.org/10.1016/j.jcrysgro.2015.02.014
15 https://doi.org/10.1016/j.jcrysgro.2015.02.015
16 https://doi.org/10.1016/j.jnoncrysol.2012.01.023
17 https://doi.org/10.1016/j.matlet.2017.12.045
18 https://doi.org/10.1016/j.microrel.2010.01.042
19 https://doi.org/10.1016/j.physb.2012.06.028
20 https://doi.org/10.1016/j.saa.2013.09.045
21 https://doi.org/10.1016/j.surfcoat.2011.09.062
22 https://doi.org/10.1016/j.triboint.2003.11.010
23 https://doi.org/10.1016/j.triboint.2015.02.005
24 https://doi.org/10.1016/j.tsf.2009.12.060
25 https://doi.org/10.1016/j.tsf.2012.06.024
26 https://doi.org/10.1016/j.tsf.2013.11.117
27 https://doi.org/10.1016/j.vacuum.2013.12.009
28 https://doi.org/10.1016/s0042-207x(99)00189-x
29 https://doi.org/10.1039/c6ra02440h
30 https://doi.org/10.1051/matecconf/20166704013
31 https://doi.org/10.1051/matecconf/20166704015
32 https://doi.org/10.1063/1.1368156
33 https://doi.org/10.1063/1.3202409
34 https://doi.org/10.1088/0305-4624/19/2/304
35 https://doi.org/10.1088/0953-8984/16/12/r01
36 https://doi.org/10.1088/2053-1591/3/10/106406
37 https://doi.org/10.1143/jjap.49.081203
38 https://doi.org/10.2109/jcersj2.118.152
39 https://doi.org/10.2320/matertrans.m2014089
40 https://doi.org/10.4028/www.scientific.net/amr.829.497
41 schema:datePublished 2019-05
42 schema:datePublishedReg 2019-05-01
43 schema:description In this research work, InGaN triple compound was grown under low nitrogen gas flows by using the sputtering technique. The structural, optical and morphological characteristics of the InGaN compound have been studied in detail. X-ray diffraction (XRD) and Raman for structural analysis; absorption measurement technique for optical properties; scanning electron microscopy and atomic force microscopy (AFM) measurement techniques were used for the study of the morphological characteristics. In the XRD analysis, the film deposited at 0 sccm gas flow exhibits a (0002) peak of InN, (0002) and (10–11) peaks of GaN. Other films show dendritic structure. In the Raman analysis, the optical phonon modes of the InGaN compound are A1(LO) and E2(high). Optical band gaps are found to be 2.57 eV, 2.54 eV, 3.03 eV and 2.93 eV for 0–0.4–0.8–1.2 sccm, respectively. These changes are ascribed to the degraded crystallinity of the grown films at high nitrogen flow rates. The surface morphology of the InGaN films grown at 0 sccm displays clusters of near-spherical-shaped nanoparticles over the surface. In the results of the AFM, the surface topography of the InGaN thin films deposited with lower nitrogen content exhibited fewer grains on the surface, especially on 0.4 sccm gas flow rate. The number of grains increased with higher N2 gas flow rates. The surface roughness of the films decreased with increasing N2 gas flows. It is clear that surface morphology of the films depends on the gas flow rate very much. Due to their morphological properties, we can say that they are suitable structures for optoelectronic applications and friction applications in engineering. We can also say that films with a hexagonal crystal structure and different optical band gaps can be used in device applications such as LED, laser diode and power electronics.
44 schema:genre research_article
45 schema:inLanguage en
46 schema:isAccessibleForFree false
47 schema:isPartOf Nd3f1e0b639584f3baac5fa5d0bc0d8af
48 Ne6ca468198db47f39984e125f2de5a81
49 sg:journal.1136213
50 schema:name Changes of the Physical Properties of Sputtered InGaN Thin Films Under Small Nitrogen Gas Flow Variations
51 schema:pagination 1-8
52 schema:productId N08a8954d0eb24cd2a8fb142bfc258e40
53 N143d8b59b88149559a0c5fe7aaa9f3bf
54 Nb13c7a2384ff4e53a645cd0f6bb4578f
55 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112093307
56 https://doi.org/10.1007/s11664-019-07042-8
57 schema:sdDatePublished 2019-04-11T14:21
58 schema:sdLicense https://scigraph.springernature.com/explorer/license/
59 schema:sdPublisher N3740cf6703014adf9f7dcfbc129534e7
60 schema:url https://link.springer.com/10.1007%2Fs11664-019-07042-8
61 sgo:license sg:explorer/license/
62 sgo:sdDataset articles
63 rdf:type schema:ScholarlyArticle
64 N08a8954d0eb24cd2a8fb142bfc258e40 schema:name readcube_id
65 schema:value c7a990f917d0627c1285720b42aed5a0359c2c690e123c7b2a6a5f351a25184b
66 rdf:type schema:PropertyValue
67 N143d8b59b88149559a0c5fe7aaa9f3bf schema:name dimensions_id
68 schema:value pub.1112093307
69 rdf:type schema:PropertyValue
70 N33feb1959d3d49798449c8ebd6933374 rdf:first Nff682dc9bbb74a24affdbd69f67ef1e3
71 rdf:rest rdf:nil
72 N3740cf6703014adf9f7dcfbc129534e7 schema:name Springer Nature - SN SciGraph project
73 rdf:type schema:Organization
74 N78738843e55b467ea0db88875786e2af rdf:first Nf14f135540994baf89d2667eeebd5f52
75 rdf:rest N33feb1959d3d49798449c8ebd6933374
76 Nb13c7a2384ff4e53a645cd0f6bb4578f schema:name doi
77 schema:value 10.1007/s11664-019-07042-8
78 rdf:type schema:PropertyValue
79 Nd3f1e0b639584f3baac5fa5d0bc0d8af schema:issueNumber 5
80 rdf:type schema:PublicationIssue
81 Ne6ca468198db47f39984e125f2de5a81 schema:volumeNumber 48
82 rdf:type schema:PublicationVolume
83 Nf14f135540994baf89d2667eeebd5f52 schema:affiliation https://www.grid.ac/institutes/grid.449204.f
84 schema:familyName Erdoğan
85 schema:givenName Erman
86 rdf:type schema:Person
87 Nff682dc9bbb74a24affdbd69f67ef1e3 schema:affiliation https://www.grid.ac/institutes/grid.411445.1
88 schema:familyName Kundakçı
89 schema:givenName Mutlu
90 rdf:type schema:Person
91 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
92 schema:name Chemical Sciences
93 rdf:type schema:DefinedTerm
94 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
95 schema:name Physical Chemistry (incl. Structural)
96 rdf:type schema:DefinedTerm
97 sg:journal.1136213 schema:issn 0361-5235
98 1543-186X
99 schema:name Journal of Electronic Materials
100 rdf:type schema:Periodical
101 sg:pub.10.1007/s11664-013-2635-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050046406
102 https://doi.org/10.1007/s11664-013-2635-7
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11664-014-3494-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022254328
105 https://doi.org/10.1007/s11664-014-3494-6
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11664-017-5608-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085869809
108 https://doi.org/10.1007/s11664-017-5608-4
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s12034-012-0344-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013903723
111 https://doi.org/10.1007/s12034-012-0344-0
112 rdf:type schema:CreativeWork
113 sg:pub.10.1186/1556-276x-9-334 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002550447
114 https://doi.org/10.1186/1556-276x-9-334
115 rdf:type schema:CreativeWork
116 sg:pub.10.3938/jkps.66.978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038591681
117 https://doi.org/10.3938/jkps.66.978
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.apsusc.2012.10.202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019110991
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jallcom.2016.03.247 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051309023
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jallcom.2017.01.077 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002155998
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jcrysgro.2010.10.050 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014901217
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.jcrysgro.2015.02.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000377722
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.jcrysgro.2015.02.015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032738587
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jnoncrysol.2012.01.023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024629488
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.matlet.2017.12.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099650597
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.microrel.2010.01.042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039872485
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/j.physb.2012.06.028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023098612
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1016/j.saa.2013.09.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005473810
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1016/j.surfcoat.2011.09.062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053265694
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1016/j.triboint.2003.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050778842
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1016/j.triboint.2015.02.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027608003
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1016/j.tsf.2009.12.060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014047576
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1016/j.tsf.2012.06.024 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027304297
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1016/j.tsf.2013.11.117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021275003
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1016/j.vacuum.2013.12.009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011031329
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1016/s0042-207x(99)00189-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1039564986
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1039/c6ra02440h schema:sameAs https://app.dimensions.ai/details/publication/pub.1010271731
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1051/matecconf/20166704013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057036542
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1051/matecconf/20166704015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057036544
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1063/1.1368156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057699617
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1063/1.3202409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057918562
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1088/0305-4624/19/2/304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059089245
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1088/0953-8984/16/12/r01 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010501535
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1088/2053-1591/3/10/106406 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059183104
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1143/jjap.49.081203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063085359
174 rdf:type schema:CreativeWork
175 https://doi.org/10.2109/jcersj2.118.152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035197027
176 rdf:type schema:CreativeWork
177 https://doi.org/10.2320/matertrans.m2014089 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024544947
178 rdf:type schema:CreativeWork
179 https://doi.org/10.4028/www.scientific.net/amr.829.497 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010803924
180 rdf:type schema:CreativeWork
181 https://www.grid.ac/institutes/grid.411445.1 schema:alternateName Atatürk University
182 schema:name Department of Physics, Atatürk University, 25240, Erzurum, Turkey
183 rdf:type schema:Organization
184 https://www.grid.ac/institutes/grid.449204.f schema:alternateName Muş Alparslan University
185 schema:name Department of Electrical & Electronics Engineering, Muş Alparslan University, 49250, Muş, Turkey
186 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...