Development of the Automotive Thermoelectric Generator Electrical Network View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2019-04

AUTHORS

Pavel Shiriaev, Konstantin Shishov, Alexey Osipkov, Leonid Tishchenko

ABSTRACT

The automotive thermoelectric generator (ATEG) produces electrical power by converting heat energy of engine exhaust gasses. The transfer of this electrical energy to a vehicle’s electrical system should be done with minimum losses. The electrical parameters of thermoelectric modules (TEMs), which are installed in the ATEG, are changing due to non-stationary ATEG operating conditions. This fact leads to a mismatch between ATEG resistance and equivalent electrical load resistance, causing the issue of generating maximum energy. One potential solution to this problem is a maximum power point tracking (MPPT) method. MPPT controllers provide harvesting maximum power from the ATEG. In this way, MPPT application is required for thermoelectric systems with variable heat flow. However, any MPPT controller has its own conversion losses, which affect overall ATEG system efficiency. These losses depend on MPPT controller working conditions, i.e. TEMs output voltages and currents. Therefore, the simulation of the electrical circuit should be done during driving cycles to evaluate the total efficiency of the entire system. This evaluation helps to estimate the effectiveness of each element of the electrical network. In this paper, we elaborate our theoretical and experimental studies of the ATEG electrical network and do comprehensive discussion over the design for it. More... »

PAGES

1998-2009

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-019-06932-1

DOI

http://dx.doi.org/10.1007/s11664-019-06932-1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1111509141


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Peoples' Friendship University of Russia", 
          "id": "https://www.grid.ac/institutes/grid.77642.30", 
          "name": [
            "Bauman Moscow State Technical University, 2-ya Baumanskaya 5/1, 105005, Moscow, Russian Federation", 
            "Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shiriaev", 
        "givenName": "Pavel", 
        "id": "sg:person.012120075404.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120075404.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peoples' Friendship University of Russia", 
          "id": "https://www.grid.ac/institutes/grid.77642.30", 
          "name": [
            "Bauman Moscow State Technical University, 2-ya Baumanskaya 5/1, 105005, Moscow, Russian Federation", 
            "Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shishov", 
        "givenName": "Konstantin", 
        "id": "sg:person.011322515004.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011322515004.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Peoples' Friendship University of Russia", 
          "id": "https://www.grid.ac/institutes/grid.77642.30", 
          "name": [
            "Bauman Moscow State Technical University, 2-ya Baumanskaya 5/1, 105005, Moscow, Russian Federation", 
            "Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osipkov", 
        "givenName": "Alexey", 
        "id": "sg:person.013141305671.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013141305671.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bauman Moscow State Technical University", 
          "id": "https://www.grid.ac/institutes/grid.61569.3d", 
          "name": [
            "Bauman Moscow State Technical University, 2-ya Baumanskaya 5/1, 105005, Moscow, Russian Federation"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tishchenko", 
        "givenName": "Leonid", 
        "id": "sg:person.014315463514.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014315463514.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0018151x16010053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001704652", 
          "https://doi.org/10.1134/s0018151x16010053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0869864316050139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002987275", 
          "https://doi.org/10.1134/s0869864316050139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0869864316050139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002987275", 
          "https://doi.org/10.1134/s0869864316050139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matpr.2015.05.096", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013155782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.enconman.2015.03.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023207345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-015-4130-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024647130", 
          "https://doi.org/10.1007/s11664-015-4130-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apenergy.2014.02.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026341103"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.egypro.2015.11.886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034898116"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-013-2642-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038436838", 
          "https://doi.org/10.1007/s11664-013-2642-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2014.05.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038480773"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1289/ehp.1408882", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043090202"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tim.2005.851473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061636385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpel.2005.850975", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061755832"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/amm.700.694", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071988915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pecs.2016.12.004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083883105"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-017-5652-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086284877", 
          "https://doi.org/10.1007/s11664-017-5652-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-017-5652-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1086284877", 
          "https://doi.org/10.1007/s11664-017-5652-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782617080255", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091341107", 
          "https://doi.org/10.1134/s1063782617080255"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-018-6125-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101167825", 
          "https://doi.org/10.1007/s11664-018-6125-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-018-6125-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101167825", 
          "https://doi.org/10.1007/s11664-018-6125-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-018-6125-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101167825", 
          "https://doi.org/10.1007/s11664-018-6125-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2018.05.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104408029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rser.2018.05.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104408029"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2019-04", 
    "datePublishedReg": "2019-04-01", 
    "description": "The automotive thermoelectric generator (ATEG) produces electrical power by converting heat energy of engine exhaust gasses. The transfer of this electrical energy to a vehicle\u2019s electrical system should be done with minimum losses. The electrical parameters of thermoelectric modules (TEMs), which are installed in the ATEG, are changing due to non-stationary ATEG operating conditions. This fact leads to a mismatch between ATEG resistance and equivalent electrical load resistance, causing the issue of generating maximum energy. One potential solution to this problem is a maximum power point tracking (MPPT) method. MPPT controllers provide harvesting maximum power from the ATEG. In this way, MPPT application is required for thermoelectric systems with variable heat flow. However, any MPPT controller has its own conversion losses, which affect overall ATEG system efficiency. These losses depend on MPPT controller working conditions, i.e. TEMs output voltages and currents. Therefore, the simulation of the electrical circuit should be done during driving cycles to evaluate the total efficiency of the entire system. This evaluation helps to estimate the effectiveness of each element of the electrical network. In this paper, we elaborate our theoretical and experimental studies of the ATEG electrical network and do comprehensive discussion over the design for it.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11664-019-06932-1", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "48"
      }
    ], 
    "name": "Development of the Automotive Thermoelectric Generator Electrical Network", 
    "pagination": "1998-2009", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "69c678db217facf7ea605164ef62a233310ca48d45cd00fcf654fb763f831add"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-019-06932-1"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1111509141"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-019-06932-1", 
      "https://app.dimensions.ai/details/publication/pub.1111509141"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60342_00000003.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11664-019-06932-1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-019-06932-1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-019-06932-1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-019-06932-1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-019-06932-1'


 

This table displays all metadata directly associated to this object as RDF triples.

147 TRIPLES      21 PREDICATES      45 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-019-06932-1 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N5868979dcd124ac192791fd016db1201
4 schema:citation sg:pub.10.1007/s11664-013-2642-8
5 sg:pub.10.1007/s11664-015-4130-9
6 sg:pub.10.1007/s11664-017-5652-0
7 sg:pub.10.1007/s11664-018-6125-9
8 sg:pub.10.1134/s0018151x16010053
9 sg:pub.10.1134/s0869864316050139
10 sg:pub.10.1134/s1063782617080255
11 https://doi.org/10.1016/j.apenergy.2014.02.030
12 https://doi.org/10.1016/j.egypro.2015.11.886
13 https://doi.org/10.1016/j.enconman.2015.03.002
14 https://doi.org/10.1016/j.matpr.2015.05.096
15 https://doi.org/10.1016/j.pecs.2016.12.004
16 https://doi.org/10.1016/j.rser.2014.05.004
17 https://doi.org/10.1016/j.rser.2018.05.047
18 https://doi.org/10.1109/tim.2005.851473
19 https://doi.org/10.1109/tpel.2005.850975
20 https://doi.org/10.1289/ehp.1408882
21 https://doi.org/10.4028/www.scientific.net/amm.700.694
22 schema:datePublished 2019-04
23 schema:datePublishedReg 2019-04-01
24 schema:description The automotive thermoelectric generator (ATEG) produces electrical power by converting heat energy of engine exhaust gasses. The transfer of this electrical energy to a vehicle’s electrical system should be done with minimum losses. The electrical parameters of thermoelectric modules (TEMs), which are installed in the ATEG, are changing due to non-stationary ATEG operating conditions. This fact leads to a mismatch between ATEG resistance and equivalent electrical load resistance, causing the issue of generating maximum energy. One potential solution to this problem is a maximum power point tracking (MPPT) method. MPPT controllers provide harvesting maximum power from the ATEG. In this way, MPPT application is required for thermoelectric systems with variable heat flow. However, any MPPT controller has its own conversion losses, which affect overall ATEG system efficiency. These losses depend on MPPT controller working conditions, i.e. TEMs output voltages and currents. Therefore, the simulation of the electrical circuit should be done during driving cycles to evaluate the total efficiency of the entire system. This evaluation helps to estimate the effectiveness of each element of the electrical network. In this paper, we elaborate our theoretical and experimental studies of the ATEG electrical network and do comprehensive discussion over the design for it.
25 schema:genre research_article
26 schema:inLanguage en
27 schema:isAccessibleForFree false
28 schema:isPartOf N38610e97de5840b2962cc3db80ff172e
29 Nc3d98548e96a43cba448dfbce1fc2157
30 sg:journal.1136213
31 schema:name Development of the Automotive Thermoelectric Generator Electrical Network
32 schema:pagination 1998-2009
33 schema:productId N07ede50650eb43f8a6d0331aa0d10968
34 N75abd6bc45f44e2ab5165c74a269f571
35 Ne9d99cc190f14facb17e840955e4aee7
36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111509141
37 https://doi.org/10.1007/s11664-019-06932-1
38 schema:sdDatePublished 2019-04-11T11:01
39 schema:sdLicense https://scigraph.springernature.com/explorer/license/
40 schema:sdPublisher N2689813bf07a45e6ba4b2b2b288e6101
41 schema:url https://link.springer.com/10.1007%2Fs11664-019-06932-1
42 sgo:license sg:explorer/license/
43 sgo:sdDataset articles
44 rdf:type schema:ScholarlyArticle
45 N07ede50650eb43f8a6d0331aa0d10968 schema:name readcube_id
46 schema:value 69c678db217facf7ea605164ef62a233310ca48d45cd00fcf654fb763f831add
47 rdf:type schema:PropertyValue
48 N1a865967e8fc4eb893d92df0d1780d5f rdf:first sg:person.013141305671.57
49 rdf:rest N2c5b04eda9c94fb4811765b4a9ee7235
50 N1abbf57e1b7e4d4499b5e1522d1e7694 rdf:first sg:person.011322515004.42
51 rdf:rest N1a865967e8fc4eb893d92df0d1780d5f
52 N2689813bf07a45e6ba4b2b2b288e6101 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N2c5b04eda9c94fb4811765b4a9ee7235 rdf:first sg:person.014315463514.45
55 rdf:rest rdf:nil
56 N38610e97de5840b2962cc3db80ff172e schema:issueNumber 4
57 rdf:type schema:PublicationIssue
58 N5868979dcd124ac192791fd016db1201 rdf:first sg:person.012120075404.45
59 rdf:rest N1abbf57e1b7e4d4499b5e1522d1e7694
60 N75abd6bc45f44e2ab5165c74a269f571 schema:name dimensions_id
61 schema:value pub.1111509141
62 rdf:type schema:PropertyValue
63 Nc3d98548e96a43cba448dfbce1fc2157 schema:volumeNumber 48
64 rdf:type schema:PublicationVolume
65 Ne9d99cc190f14facb17e840955e4aee7 schema:name doi
66 schema:value 10.1007/s11664-019-06932-1
67 rdf:type schema:PropertyValue
68 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
69 schema:name Engineering
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
72 schema:name Interdisciplinary Engineering
73 rdf:type schema:DefinedTerm
74 sg:journal.1136213 schema:issn 0361-5235
75 1543-186X
76 schema:name Journal of Electronic Materials
77 rdf:type schema:Periodical
78 sg:person.011322515004.42 schema:affiliation https://www.grid.ac/institutes/grid.77642.30
79 schema:familyName Shishov
80 schema:givenName Konstantin
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011322515004.42
82 rdf:type schema:Person
83 sg:person.012120075404.45 schema:affiliation https://www.grid.ac/institutes/grid.77642.30
84 schema:familyName Shiriaev
85 schema:givenName Pavel
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012120075404.45
87 rdf:type schema:Person
88 sg:person.013141305671.57 schema:affiliation https://www.grid.ac/institutes/grid.77642.30
89 schema:familyName Osipkov
90 schema:givenName Alexey
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013141305671.57
92 rdf:type schema:Person
93 sg:person.014315463514.45 schema:affiliation https://www.grid.ac/institutes/grid.61569.3d
94 schema:familyName Tishchenko
95 schema:givenName Leonid
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014315463514.45
97 rdf:type schema:Person
98 sg:pub.10.1007/s11664-013-2642-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038436838
99 https://doi.org/10.1007/s11664-013-2642-8
100 rdf:type schema:CreativeWork
101 sg:pub.10.1007/s11664-015-4130-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024647130
102 https://doi.org/10.1007/s11664-015-4130-9
103 rdf:type schema:CreativeWork
104 sg:pub.10.1007/s11664-017-5652-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086284877
105 https://doi.org/10.1007/s11664-017-5652-0
106 rdf:type schema:CreativeWork
107 sg:pub.10.1007/s11664-018-6125-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101167825
108 https://doi.org/10.1007/s11664-018-6125-9
109 rdf:type schema:CreativeWork
110 sg:pub.10.1134/s0018151x16010053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001704652
111 https://doi.org/10.1134/s0018151x16010053
112 rdf:type schema:CreativeWork
113 sg:pub.10.1134/s0869864316050139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002987275
114 https://doi.org/10.1134/s0869864316050139
115 rdf:type schema:CreativeWork
116 sg:pub.10.1134/s1063782617080255 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091341107
117 https://doi.org/10.1134/s1063782617080255
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.apenergy.2014.02.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026341103
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.egypro.2015.11.886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034898116
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.enconman.2015.03.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023207345
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.matpr.2015.05.096 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013155782
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.pecs.2016.12.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083883105
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.rser.2014.05.004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038480773
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.rser.2018.05.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104408029
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1109/tim.2005.851473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061636385
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1109/tpel.2005.850975 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061755832
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1289/ehp.1408882 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043090202
138 rdf:type schema:CreativeWork
139 https://doi.org/10.4028/www.scientific.net/amm.700.694 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071988915
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.61569.3d schema:alternateName Bauman Moscow State Technical University
142 schema:name Bauman Moscow State Technical University, 2-ya Baumanskaya 5/1, 105005, Moscow, Russian Federation
143 rdf:type schema:Organization
144 https://www.grid.ac/institutes/grid.77642.30 schema:alternateName Peoples' Friendship University of Russia
145 schema:name Bauman Moscow State Technical University, 2-ya Baumanskaya 5/1, 105005, Moscow, Russian Federation
146 Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St, 117198, Moscow, Russian Federation
147 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...