Photoluminescence of Molecular Beam Epitaxy-Grown Mercury Cadmium Telluride: Comparison of HgCdTe/GaAs and HgCdTe/Si Technologies View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05-15

AUTHORS

K. D. Mynbaev, N. L. Bazhenov, S. A. Dvoretsky, N. N. Mikhailov, V. S. Varavin, D. V. Marin, M. V. Yakushev

ABSTRACT

Properties of HgCdTe films grown by molecular beam epitaxy on GaAs and Si substrates have been studied by performing variable-temperature photoluminescence (PL) measurements. A substantial difference in defect structure between films grown on GaAs (013) and Si (013) substrates was revealed. HgCdTe/GaAs films were mostly free of defect-related energy levels within the bandgap, which was confirmed by PL and carrier lifetime measurements. By contrast, the properties of HgCdTe/Si films are affected by uncontrolled point defects. These could not be always associated with typical “intrinsic” HgCdTe defects, such as mercury vacancies, so consideration of other defects, possibly inherent in HgCdTe/Si structures, was required. The post-growth annealing was found to have a positive effect on the defect structure by reducing the full-widths at half-maximum of excitonic PL lines for both types of films and lowering the concentration of defects specific to HgCdTe/Si. More... »

PAGES

4731-4736

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-018-6364-9

DOI

http://dx.doi.org/10.1007/s11664-018-6364-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103995303


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "ITMO University, St.-Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.35915.3b", 
          "name": [
            "Ioffe Institute, St.-Petersburg, Russia", 
            "ITMO University, St.-Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mynbaev", 
        "givenName": "K. D.", 
        "id": "sg:person.010274772027.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010274772027.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, St.-Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, St.-Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bazhenov", 
        "givenName": "N. L.", 
        "id": "sg:person.016342426307.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016342426307.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dvoretsky", 
        "givenName": "S. A.", 
        "id": "sg:person.014356370677.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014356370677.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mikhailov", 
        "givenName": "N. N.", 
        "id": "sg:person.012411463367.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411463367.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Varavin", 
        "givenName": "V. S.", 
        "id": "sg:person.012153267367.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012153267367.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Marin", 
        "givenName": "D. V.", 
        "id": "sg:person.013377473351.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377473351.82"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, Novosibirsk, Russia", 
          "id": "http://www.grid.ac/institutes/grid.415877.8", 
          "name": [
            "A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, Novosibirsk, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yakushev", 
        "givenName": "M. V.", 
        "id": "sg:person.014365504653.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365504653.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782611070232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018900034", 
          "https://doi.org/10.1134/s1063782611070232"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-017-5494-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084846345", 
          "https://doi.org/10.1007/s11664-017-5494-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-017-5599-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085723572", 
          "https://doi.org/10.1007/s11664-017-5599-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-010-1505-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006558569", 
          "https://doi.org/10.1007/s11664-010-1505-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-005-0036-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034602413", 
          "https://doi.org/10.1007/s11664-005-0036-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063782611070153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031067077", 
          "https://doi.org/10.1134/s1063782611070153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-017-5728-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091211713", 
          "https://doi.org/10.1007/s11664-017-5728-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-016-4516-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024025690", 
          "https://doi.org/10.1007/s11664-016-4516-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-015-3717-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039729430", 
          "https://doi.org/10.1007/s11664-015-3717-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05-15", 
    "datePublishedReg": "2018-05-15", 
    "description": "Properties of HgCdTe films grown by molecular beam epitaxy on GaAs and Si substrates have been studied by performing variable-temperature photoluminescence (PL) measurements. A substantial difference in defect structure between films grown on GaAs (013) and Si (013) substrates was revealed. HgCdTe/GaAs films were mostly free of defect-related energy levels within the bandgap, which was confirmed by PL and carrier lifetime measurements. By contrast, the properties of HgCdTe/Si films are affected by uncontrolled point defects. These could not be always associated with typical \u201cintrinsic\u201d HgCdTe defects, such as mercury vacancies, so consideration of other defects, possibly inherent in HgCdTe/Si structures, was required. The post-growth annealing was found to have a positive effect on the defect structure by reducing the full-widths at half-maximum of excitonic PL lines for both types of films and lowering the concentration of defects specific to HgCdTe/Si.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11664-018-6364-9", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "keywords": [
      "Si substrate", 
      "HgCdTe/Si technology", 
      "HgCdTe/Si", 
      "carrier lifetime measurements", 
      "types of films", 
      "mercury cadmium telluride", 
      "Si technology", 
      "Si films", 
      "Si structure", 
      "post-growth annealing", 
      "defect structure", 
      "GaAs films", 
      "HgCdTe films", 
      "cadmium telluride", 
      "films", 
      "concentration of defects", 
      "point defects", 
      "molecular beam epitaxy", 
      "photoluminescence measurements", 
      "GaAs", 
      "mercury vacancies", 
      "beam epitaxy", 
      "properties", 
      "substrate", 
      "annealing", 
      "Si", 
      "measurements", 
      "structure", 
      "bandgap", 
      "defects", 
      "epitaxy", 
      "telluride", 
      "beam", 
      "energy levels", 
      "technology", 
      "lifetime measurements", 
      "vacancies", 
      "photoluminescence", 
      "molecular beam", 
      "consideration", 
      "comparison", 
      "effect", 
      "concentration", 
      "PL", 
      "types", 
      "substantial differences", 
      "PL lines", 
      "positive effect", 
      "lines", 
      "differences", 
      "levels", 
      "contrast", 
      "variable-temperature photoluminescence (PL) measurements", 
      "HgCdTe/GaAs films", 
      "HgCdTe/Si films", 
      "uncontrolled point defects", 
      "HgCdTe defects", 
      "HgCdTe/Si structures", 
      "excitonic PL lines", 
      "HgCdTe/GaAs"
    ], 
    "name": "Photoluminescence of Molecular Beam Epitaxy-Grown Mercury Cadmium Telluride: Comparison of HgCdTe/GaAs and HgCdTe/Si Technologies", 
    "pagination": "4731-4736", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103995303"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-018-6364-9"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-018-6364-9", 
      "https://app.dimensions.ai/details/publication/pub.1103995303"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_789.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11664-018-6364-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6364-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6364-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6364-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6364-9'


 

This table displays all metadata directly associated to this object as RDF triples.

203 TRIPLES      22 PREDICATES      94 URIs      77 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-018-6364-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nfb4a4f19cdf04b93ae041ad50ffb21e1
4 schema:citation sg:pub.10.1007/s11664-005-0036-2
5 sg:pub.10.1007/s11664-010-1505-9
6 sg:pub.10.1007/s11664-015-3717-5
7 sg:pub.10.1007/s11664-016-4516-3
8 sg:pub.10.1007/s11664-017-5494-9
9 sg:pub.10.1007/s11664-017-5599-1
10 sg:pub.10.1007/s11664-017-5728-x
11 sg:pub.10.1134/s1063782611070153
12 sg:pub.10.1134/s1063782611070232
13 schema:datePublished 2018-05-15
14 schema:datePublishedReg 2018-05-15
15 schema:description Properties of HgCdTe films grown by molecular beam epitaxy on GaAs and Si substrates have been studied by performing variable-temperature photoluminescence (PL) measurements. A substantial difference in defect structure between films grown on GaAs (013) and Si (013) substrates was revealed. HgCdTe/GaAs films were mostly free of defect-related energy levels within the bandgap, which was confirmed by PL and carrier lifetime measurements. By contrast, the properties of HgCdTe/Si films are affected by uncontrolled point defects. These could not be always associated with typical “intrinsic” HgCdTe defects, such as mercury vacancies, so consideration of other defects, possibly inherent in HgCdTe/Si structures, was required. The post-growth annealing was found to have a positive effect on the defect structure by reducing the full-widths at half-maximum of excitonic PL lines for both types of films and lowering the concentration of defects specific to HgCdTe/Si.
16 schema:genre article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N22a37e0fc8d64d0ea3e084f0e3fc372a
20 Ned05279cd286432c95ffac7cbb3f52a4
21 sg:journal.1136213
22 schema:keywords GaAs
23 GaAs films
24 HgCdTe defects
25 HgCdTe films
26 HgCdTe/GaAs
27 HgCdTe/GaAs films
28 HgCdTe/Si
29 HgCdTe/Si films
30 HgCdTe/Si structures
31 HgCdTe/Si technology
32 PL
33 PL lines
34 Si
35 Si films
36 Si structure
37 Si substrate
38 Si technology
39 annealing
40 bandgap
41 beam
42 beam epitaxy
43 cadmium telluride
44 carrier lifetime measurements
45 comparison
46 concentration
47 concentration of defects
48 consideration
49 contrast
50 defect structure
51 defects
52 differences
53 effect
54 energy levels
55 epitaxy
56 excitonic PL lines
57 films
58 levels
59 lifetime measurements
60 lines
61 measurements
62 mercury cadmium telluride
63 mercury vacancies
64 molecular beam
65 molecular beam epitaxy
66 photoluminescence
67 photoluminescence measurements
68 point defects
69 positive effect
70 post-growth annealing
71 properties
72 structure
73 substantial differences
74 substrate
75 technology
76 telluride
77 types
78 types of films
79 uncontrolled point defects
80 vacancies
81 variable-temperature photoluminescence (PL) measurements
82 schema:name Photoluminescence of Molecular Beam Epitaxy-Grown Mercury Cadmium Telluride: Comparison of HgCdTe/GaAs and HgCdTe/Si Technologies
83 schema:pagination 4731-4736
84 schema:productId N4722a26f1d6f4b8e87c3c725bedf51f2
85 Ndd73130bc8d0455baac66c09b2748d03
86 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103995303
87 https://doi.org/10.1007/s11664-018-6364-9
88 schema:sdDatePublished 2021-11-01T18:33
89 schema:sdLicense https://scigraph.springernature.com/explorer/license/
90 schema:sdPublisher N197737fc8dbe46c1b9988c50a70f4654
91 schema:url https://doi.org/10.1007/s11664-018-6364-9
92 sgo:license sg:explorer/license/
93 sgo:sdDataset articles
94 rdf:type schema:ScholarlyArticle
95 N05fb62e7749440c2a4b91b34e102fd47 rdf:first sg:person.016342426307.11
96 rdf:rest Nc48e8da4f9b748dd87d17bb4be7806eb
97 N197737fc8dbe46c1b9988c50a70f4654 schema:name Springer Nature - SN SciGraph project
98 rdf:type schema:Organization
99 N22a37e0fc8d64d0ea3e084f0e3fc372a schema:issueNumber 8
100 rdf:type schema:PublicationIssue
101 N26fc14cae4a64df4a3207584e73b4459 rdf:first sg:person.012153267367.48
102 rdf:rest N318bfad4bd7946e8bdc337733997a2df
103 N318bfad4bd7946e8bdc337733997a2df rdf:first sg:person.013377473351.82
104 rdf:rest Nef13c88803af4df8953f177354bca2ba
105 N40a781e21f014792a621fda2bcb24275 rdf:first sg:person.012411463367.07
106 rdf:rest N26fc14cae4a64df4a3207584e73b4459
107 N4722a26f1d6f4b8e87c3c725bedf51f2 schema:name dimensions_id
108 schema:value pub.1103995303
109 rdf:type schema:PropertyValue
110 Nc48e8da4f9b748dd87d17bb4be7806eb rdf:first sg:person.014356370677.99
111 rdf:rest N40a781e21f014792a621fda2bcb24275
112 Ndd73130bc8d0455baac66c09b2748d03 schema:name doi
113 schema:value 10.1007/s11664-018-6364-9
114 rdf:type schema:PropertyValue
115 Ned05279cd286432c95ffac7cbb3f52a4 schema:volumeNumber 47
116 rdf:type schema:PublicationVolume
117 Nef13c88803af4df8953f177354bca2ba rdf:first sg:person.014365504653.92
118 rdf:rest rdf:nil
119 Nfb4a4f19cdf04b93ae041ad50ffb21e1 rdf:first sg:person.010274772027.40
120 rdf:rest N05fb62e7749440c2a4b91b34e102fd47
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
125 schema:name Materials Engineering
126 rdf:type schema:DefinedTerm
127 sg:journal.1136213 schema:issn 0361-5235
128 1543-186X
129 schema:name Journal of Electronic Materials
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.010274772027.40 schema:affiliation grid-institutes:grid.35915.3b
133 schema:familyName Mynbaev
134 schema:givenName K. D.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010274772027.40
136 rdf:type schema:Person
137 sg:person.012153267367.48 schema:affiliation grid-institutes:grid.415877.8
138 schema:familyName Varavin
139 schema:givenName V. S.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012153267367.48
141 rdf:type schema:Person
142 sg:person.012411463367.07 schema:affiliation grid-institutes:grid.415877.8
143 schema:familyName Mikhailov
144 schema:givenName N. N.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012411463367.07
146 rdf:type schema:Person
147 sg:person.013377473351.82 schema:affiliation grid-institutes:grid.415877.8
148 schema:familyName Marin
149 schema:givenName D. V.
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013377473351.82
151 rdf:type schema:Person
152 sg:person.014356370677.99 schema:affiliation grid-institutes:grid.415877.8
153 schema:familyName Dvoretsky
154 schema:givenName S. A.
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014356370677.99
156 rdf:type schema:Person
157 sg:person.014365504653.92 schema:affiliation grid-institutes:grid.415877.8
158 schema:familyName Yakushev
159 schema:givenName M. V.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014365504653.92
161 rdf:type schema:Person
162 sg:person.016342426307.11 schema:affiliation grid-institutes:grid.423485.c
163 schema:familyName Bazhenov
164 schema:givenName N. L.
165 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016342426307.11
166 rdf:type schema:Person
167 sg:pub.10.1007/s11664-005-0036-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034602413
168 https://doi.org/10.1007/s11664-005-0036-2
169 rdf:type schema:CreativeWork
170 sg:pub.10.1007/s11664-010-1505-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006558569
171 https://doi.org/10.1007/s11664-010-1505-9
172 rdf:type schema:CreativeWork
173 sg:pub.10.1007/s11664-015-3717-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039729430
174 https://doi.org/10.1007/s11664-015-3717-5
175 rdf:type schema:CreativeWork
176 sg:pub.10.1007/s11664-016-4516-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024025690
177 https://doi.org/10.1007/s11664-016-4516-3
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/s11664-017-5494-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084846345
180 https://doi.org/10.1007/s11664-017-5494-9
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/s11664-017-5599-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085723572
183 https://doi.org/10.1007/s11664-017-5599-1
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/s11664-017-5728-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1091211713
186 https://doi.org/10.1007/s11664-017-5728-x
187 rdf:type schema:CreativeWork
188 sg:pub.10.1134/s1063782611070153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031067077
189 https://doi.org/10.1134/s1063782611070153
190 rdf:type schema:CreativeWork
191 sg:pub.10.1134/s1063782611070232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018900034
192 https://doi.org/10.1134/s1063782611070232
193 rdf:type schema:CreativeWork
194 grid-institutes:grid.35915.3b schema:alternateName ITMO University, St.-Petersburg, Russia
195 schema:name ITMO University, St.-Petersburg, Russia
196 Ioffe Institute, St.-Petersburg, Russia
197 rdf:type schema:Organization
198 grid-institutes:grid.415877.8 schema:alternateName A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, Novosibirsk, Russia
199 schema:name A.V. Rzhanov Institute of Semiconductor Physics of SB RAS, Novosibirsk, Russia
200 rdf:type schema:Organization
201 grid-institutes:grid.423485.c schema:alternateName Ioffe Institute, St.-Petersburg, Russia
202 schema:name Ioffe Institute, St.-Petersburg, Russia
203 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...