Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-04-10

AUTHORS

T. Torchynska, L. Khomenkova, A. Slaoui

ABSTRACT

Si-rich SiNx films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100°C for 30 min was applied to produce the Si quantum dots (QDs) in the SiNx films. Spectroscopic ellipsometry was used to determine the refractive index of the SiNx films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiNx films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1–3.0 eV are related to the carrier recombination via radiative native defects in the SiNx host. Simultaneously, the PL bands with the peaks at 1.5–2.0 eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiNx emission is discussed. More... »

PAGES

3927-3933

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-018-6271-0

DOI

http://dx.doi.org/10.1007/s11664-018-6271-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1103205369


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Instituto Polit\u00e9cnico Nacional, ESFM, 07738, Mexico City, Mexico", 
          "id": "http://www.grid.ac/institutes/grid.418275.d", 
          "name": [
            "Instituto Polit\u00e9cnico Nacional, ESFM, 07738, Mexico City, Mexico"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Torchynska", 
        "givenName": "T.", 
        "id": "sg:person.07350461223.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350461223.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "V. Lashkaryov Institute of Semiconductor Physics at NASU, 03028, Kiev, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.466789.2", 
          "name": [
            "V. Lashkaryov Institute of Semiconductor Physics at NASU, 03028, Kiev, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Khomenkova", 
        "givenName": "L.", 
        "id": "sg:person.0777143227.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777143227.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "ICube, 23 rue du Loess, BP 20 CR, 67037, Strasbourg Cedex 2, France", 
          "id": "http://www.grid.ac/institutes/grid.463766.6", 
          "name": [
            "ICube, 23 rue du Loess, BP 20 CR, 67037, Strasbourg Cedex 2, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Slaoui", 
        "givenName": "A.", 
        "id": "sg:person.01300745534.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300745534.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/mrc.2017.39", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1090279795", 
          "https://doi.org/10.1557/mrc.2017.39"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-10", 
    "datePublishedReg": "2018-04-10", 
    "description": "Si-rich SiNx films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100\u00b0C for 30\u00a0min was applied to produce the Si quantum dots (QDs) in the SiNx films. Spectroscopic ellipsometry was used to determine the refractive index of the SiNx films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiNx films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1\u20133.0\u00a0eV are related to the carrier recombination via radiative native defects in the SiNx host. Simultaneously, the PL bands with the peaks at 1.5\u20132.0\u00a0eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiNx emission is discussed.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11664-018-6271-0", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "keywords": [
      "Si-rich SiNx films", 
      "SiNx films", 
      "Si quantum dots", 
      "NH3/SiH4 gas flow ratio", 
      "plasma-enhanced chemical vapor deposition", 
      "conventional furnace annealing", 
      "gas flow ratio", 
      "chemical vapor deposition", 
      "furnace annealing", 
      "Si substrate", 
      "film stoichiometry", 
      "non-monotonous variation", 
      "carrier recombination", 
      "vapor deposition", 
      "Si content", 
      "different PL peaks", 
      "flow ratio", 
      "spectroscopic ellipsometry", 
      "films", 
      "quantum dots", 
      "different radiative channels", 
      "Fourier transform", 
      "excess content", 
      "PL band", 
      "native defects", 
      "light emission", 
      "photoluminescence spectra", 
      "refractive index", 
      "excitation light energy", 
      "PL peak", 
      "variable temperature", 
      "light energy", 
      "PL spectra", 
      "different sizes", 
      "exciton recombination", 
      "microstructure", 
      "emission", 
      "energy", 
      "annealing", 
      "different stoichiometries", 
      "range 2.1", 
      "ellipsometry", 
      "temperature", 
      "deposition", 
      "transform", 
      "peak", 
      "stoichiometry", 
      "substrate", 
      "band", 
      "content", 
      "spectroscopy", 
      "recombination", 
      "ratio", 
      "dots", 
      "spectra", 
      "size", 
      "defects", 
      "radiative channels", 
      "channels", 
      "variation", 
      "modification", 
      "min", 
      "analysis", 
      "way", 
      "index", 
      "competition", 
      "host"
    ], 
    "name": "Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy", 
    "pagination": "3927-3933", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1103205369"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-018-6271-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-018-6271-0", 
      "https://app.dimensions.ai/details/publication/pub.1103205369"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_790.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11664-018-6271-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6271-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6271-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6271-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6271-0'


 

This table displays all metadata directly associated to this object as RDF triples.

148 TRIPLES      21 PREDICATES      92 URIs      83 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-018-6271-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N4b6e3148771b4201a840a87a152ccec0
4 schema:citation sg:pub.10.1557/mrc.2017.39
5 schema:datePublished 2018-04-10
6 schema:datePublishedReg 2018-04-10
7 schema:description Si-rich SiNx films with different stoichiometry were grown on Si substrate by plasma-enhanced chemical vapor deposition. The Si content was varied by changing the NH3/SiH4 gas flow ratio from 0.45 up to 1.0. Conventional furnace annealing at 1100°C for 30 min was applied to produce the Si quantum dots (QDs) in the SiNx films. Spectroscopic ellipsometry was used to determine the refractive index of the SiNx films that allowed estimating the film's stoichiometry. Fourier transform infrared spectroscopy has been also used to confirm the stoichiometry and microstructure. Photoluminescence (PL) spectra of Si-rich SiNx films are complex. A non-monotonous variation of the different PL peaks versus Si excess contents testifies to the competition of different radiative channels. The analysis of PL spectra, measured at the different excitation light energies and variable temperatures, has revealed that the PL bands with the peaks within the range 2.1–3.0 eV are related to the carrier recombination via radiative native defects in the SiNx host. Simultaneously, the PL bands with the peaks at 1.5–2.0 eV are caused by the exciton recombination in the Si QDs of different sizes. The way to control the SiNx emission is discussed.
8 schema:genre article
9 schema:isAccessibleForFree false
10 schema:isPartOf N26e0c51f829c4090957a8db6d67286d3
11 N4f4a54dec1694974b7d214aaa155853e
12 sg:journal.1136213
13 schema:keywords Fourier transform
14 NH3/SiH4 gas flow ratio
15 PL band
16 PL peak
17 PL spectra
18 Si content
19 Si quantum dots
20 Si substrate
21 Si-rich SiNx films
22 SiNx films
23 analysis
24 annealing
25 band
26 carrier recombination
27 channels
28 chemical vapor deposition
29 competition
30 content
31 conventional furnace annealing
32 defects
33 deposition
34 different PL peaks
35 different radiative channels
36 different sizes
37 different stoichiometries
38 dots
39 ellipsometry
40 emission
41 energy
42 excess content
43 excitation light energy
44 exciton recombination
45 film stoichiometry
46 films
47 flow ratio
48 furnace annealing
49 gas flow ratio
50 host
51 index
52 light emission
53 light energy
54 microstructure
55 min
56 modification
57 native defects
58 non-monotonous variation
59 peak
60 photoluminescence spectra
61 plasma-enhanced chemical vapor deposition
62 quantum dots
63 radiative channels
64 range 2.1
65 ratio
66 recombination
67 refractive index
68 size
69 spectra
70 spectroscopic ellipsometry
71 spectroscopy
72 stoichiometry
73 substrate
74 temperature
75 transform
76 vapor deposition
77 variable temperature
78 variation
79 way
80 schema:name Modification of Light Emission in Si-Rich Silicon Nitride Films Versus Stoichiometry and Excitation Light Energy
81 schema:pagination 3927-3933
82 schema:productId N722235ac8df34e26ad096b7033e02eb3
83 N8a07bb67b06d4c2180a510739e4c0fff
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1103205369
85 https://doi.org/10.1007/s11664-018-6271-0
86 schema:sdDatePublished 2022-10-01T06:44
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher N6b0e0841e505476a8cf42e1a99eafb82
89 schema:url https://doi.org/10.1007/s11664-018-6271-0
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N26e0c51f829c4090957a8db6d67286d3 schema:issueNumber 7
94 rdf:type schema:PublicationIssue
95 N4b6e3148771b4201a840a87a152ccec0 rdf:first sg:person.07350461223.08
96 rdf:rest N6cd7a40ab14d476c8cd06f8ffe8f5ffa
97 N4f4a54dec1694974b7d214aaa155853e schema:volumeNumber 47
98 rdf:type schema:PublicationVolume
99 N6b0e0841e505476a8cf42e1a99eafb82 schema:name Springer Nature - SN SciGraph project
100 rdf:type schema:Organization
101 N6cd7a40ab14d476c8cd06f8ffe8f5ffa rdf:first sg:person.0777143227.34
102 rdf:rest Ne555195e8d6a4bc9965525cf342b0f0b
103 N722235ac8df34e26ad096b7033e02eb3 schema:name dimensions_id
104 schema:value pub.1103205369
105 rdf:type schema:PropertyValue
106 N8a07bb67b06d4c2180a510739e4c0fff schema:name doi
107 schema:value 10.1007/s11664-018-6271-0
108 rdf:type schema:PropertyValue
109 Ne555195e8d6a4bc9965525cf342b0f0b rdf:first sg:person.01300745534.21
110 rdf:rest rdf:nil
111 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
112 schema:name Engineering
113 rdf:type schema:DefinedTerm
114 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
115 schema:name Materials Engineering
116 rdf:type schema:DefinedTerm
117 sg:journal.1136213 schema:issn 0361-5235
118 1543-186X
119 schema:name Journal of Electronic Materials
120 schema:publisher Springer Nature
121 rdf:type schema:Periodical
122 sg:person.01300745534.21 schema:affiliation grid-institutes:grid.463766.6
123 schema:familyName Slaoui
124 schema:givenName A.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01300745534.21
126 rdf:type schema:Person
127 sg:person.07350461223.08 schema:affiliation grid-institutes:grid.418275.d
128 schema:familyName Torchynska
129 schema:givenName T.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07350461223.08
131 rdf:type schema:Person
132 sg:person.0777143227.34 schema:affiliation grid-institutes:grid.466789.2
133 schema:familyName Khomenkova
134 schema:givenName L.
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0777143227.34
136 rdf:type schema:Person
137 sg:pub.10.1557/mrc.2017.39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1090279795
138 https://doi.org/10.1557/mrc.2017.39
139 rdf:type schema:CreativeWork
140 grid-institutes:grid.418275.d schema:alternateName Instituto Politécnico Nacional, ESFM, 07738, Mexico City, Mexico
141 schema:name Instituto Politécnico Nacional, ESFM, 07738, Mexico City, Mexico
142 rdf:type schema:Organization
143 grid-institutes:grid.463766.6 schema:alternateName ICube, 23 rue du Loess, BP 20 CR, 67037, Strasbourg Cedex 2, France
144 schema:name ICube, 23 rue du Loess, BP 20 CR, 67037, Strasbourg Cedex 2, France
145 rdf:type schema:Organization
146 grid-institutes:grid.466789.2 schema:alternateName V. Lashkaryov Institute of Semiconductor Physics at NASU, 03028, Kiev, Ukraine
147 schema:name V. Lashkaryov Institute of Semiconductor Physics at NASU, 03028, Kiev, Ukraine
148 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...