Enhancing Thermoelectric Figure-of-Merit of Polycrystalline NayCoO2 by a Combination of Non-stoichiometry and Co-substitution View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-06

AUTHORS

Md. Mofasser Mallick, Satish Vitta

ABSTRACT

Co-oxides with a layered structure are of interest for high-temperature thermoelectric applications as they can be tuned to enhance their electrical conductivity while retaining their low thermal conductivity. The figure-of-merit of NayCoO2 has been enhanced using the combined effects of Na-non-stoichiometry and non-isoelectronic Co-substitution. A series of compounds Na0.7Co1−xNixO2 with x ≤ 0.1 have been synthesized using conventional techniques. Structural analysis using x-ray diffraction and Rietveld refinement shows the formation of a γ-NaCoO2-type phase in all the compounds. The presence of a small amount of NiO for x > 0.05 indicates that the solubility limit of Ni in Na0.7CoO2 is 5 at.%. All the compounds have been found to be p-type with the thermopower reaching a maximum of 220 μV K−1 at 1023 K for x = 0.1. The thermopower has been found to vary linearly with temperature for all the compounds; a degenerate metallic behavior. The electrical resistivity varies between 3 and 10 mΩ cm at all temperatures and has a metallic temperature dependence in agreement with the thermopower results. The power factor for the x = 0.1 compound reaches a maximum value of 0.55 mW m−1 K−2 at ∼ 900 K compared to 0.45 mW m−1 K−2 for the compound with no substitution. The thermal conductivity at 1023 K decreases from 1.2 to 0.9 W m−1 K−1 for x = 0.1. These factors lead to an increase of the figure-of-merit, zT, to 0.58 at 1023 K for x = 0.1, an increase of 57% compared to the unsubstituted compound. The magnetic studies show that Na0.7CoO2 is paramagnetic with an antiferromagnetic transition at ∼ 36 K. Substitution of Ni2+ for Co3+ has been found to induce a ferromagnetic-like transition at ∼ 240 K which is suppressed at high fields. More... »

PAGES

3230-3237

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-018-6186-9

DOI

http://dx.doi.org/10.1007/s11664-018-6186-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101514233


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Bombay", 
          "id": "https://www.grid.ac/institutes/grid.417971.d", 
          "name": [
            "Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, Mumbai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mallick", 
        "givenName": "Md. Mofasser", 
        "id": "sg:person.013516255266.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013516255266.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Indian Institute of Technology Bombay", 
          "id": "https://www.grid.ac/institutes/grid.417971.d", 
          "name": [
            "Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, Mumbai, India"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vitta", 
        "givenName": "Satish", 
        "id": "sg:person.01325463133.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325463133.20"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.jallcom.2005.07.067", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001050934"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jeurceramsoc.2011.10.007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002461057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1209/0295-5075/82/17002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009051340"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4916526", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012476276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3327452", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013740915"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat2090", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014989328", 
          "https://doi.org/10.1038/nmat2090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0020168516030079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018007276", 
          "https://doi.org/10.1134/s0020168516030079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.247001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018103064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.92.247001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018103064"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2009.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022868796"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2005.08.035", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023199514"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2006.10.047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026263238"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1847852", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027451398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2008.04.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028483758"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(91)90797-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037061815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0921-4534(91)90797-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037061815"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.217001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037316156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.91.217001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037316156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.matlet.2004.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038261853"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/17/4/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040092595"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044565704", 
          "https://doi.org/10.1038/nature01877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature01877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044565704", 
          "https://doi.org/10.1038/nature01877"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(94)90152-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044584812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0025-5408(94)90152-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044584812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:jmsc.0000034151.93222.18", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045594773", 
          "https://doi.org/10.1023/b:jmsc.0000034151.93222.18"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(89)90179-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047158544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3093(89)90179-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047158544"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.214517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049384637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.214517", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049384637"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.174104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052967212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.73.174104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052967212"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jace.12076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053572993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac60363a034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055068172"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.jpcc.5b10885", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055110466"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm300466b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055414811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1400777", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057702923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.21.4223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060527297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.21.4223", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060527297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.6869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.62.6869", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060597888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.964", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.1247751", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062163731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1557/mrs2006.46", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067969127"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.inorgchem.7b00476", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085322015"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-06", 
    "datePublishedReg": "2018-06-01", 
    "description": "Co-oxides with a layered structure are of interest for high-temperature thermoelectric applications as they can be tuned to enhance their electrical conductivity while retaining their low thermal conductivity. The figure-of-merit of NayCoO2 has been enhanced using the combined effects of Na-non-stoichiometry and non-isoelectronic Co-substitution. A series of compounds Na0.7Co1\u2212xNixO2 with x \u2264 0.1 have been synthesized using conventional techniques. Structural analysis using x-ray diffraction and Rietveld refinement shows the formation of a \u03b3-NaCoO2-type phase in all the compounds. The presence of a small amount of NiO for x > 0.05 indicates that the solubility limit of Ni in Na0.7CoO2 is 5 at.%. All the compounds have been found to be p-type with the thermopower reaching a maximum of 220 \u03bcV K\u22121 at 1023 K for x = 0.1. The thermopower has been found to vary linearly with temperature for all the compounds; a degenerate metallic behavior. The electrical resistivity varies between 3 and 10 m\u03a9 cm at all temperatures and has a metallic temperature dependence in agreement with the thermopower results. The power factor for the x = 0.1 compound reaches a maximum value of 0.55 mW m\u22121 K\u22122 at \u223c 900 K compared to 0.45 mW m\u22121 K\u22122 for the compound with no substitution. The thermal conductivity at 1023 K decreases from 1.2 to 0.9 W m\u22121 K\u22121 for x = 0.1. These factors lead to an increase of the figure-of-merit, zT, to 0.58 at 1023 K for x = 0.1, an increase of 57% compared to the unsubstituted compound. The magnetic studies show that Na0.7CoO2 is paramagnetic with an antiferromagnetic transition at \u223c 36 K. Substitution of Ni2+ for Co3+ has been found to induce a ferromagnetic-like transition at \u223c 240 K which is suppressed at high fields.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11664-018-6186-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Enhancing Thermoelectric Figure-of-Merit of Polycrystalline NayCoO2 by a Combination of Non-stoichiometry and Co-substitution", 
    "pagination": "3230-3237", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dfb922ae4767e26a1b3d47ef76370269f074e065e3ea8e54115116b0cdd3a1fe"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-018-6186-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101514233"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-018-6186-9", 
      "https://app.dimensions.ai/details/publication/pub.1101514233"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:32", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000357_0000000357/records_99328_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11664-018-6186-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6186-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6186-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6186-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6186-9'


 

This table displays all metadata directly associated to this object as RDF triples.

174 TRIPLES      21 PREDICATES      61 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-018-6186-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N793bf486baf14830910f67ba5415b2ae
4 schema:citation sg:pub.10.1023/b:jmsc.0000034151.93222.18
5 sg:pub.10.1038/nature01877
6 sg:pub.10.1038/nmat2090
7 sg:pub.10.1134/s0020168516030079
8 https://doi.org/10.1016/0022-3093(89)90179-8
9 https://doi.org/10.1016/0025-5408(94)90152-x
10 https://doi.org/10.1016/0921-4534(91)90797-3
11 https://doi.org/10.1016/j.jallcom.2005.07.067
12 https://doi.org/10.1016/j.jallcom.2005.08.035
13 https://doi.org/10.1016/j.jallcom.2006.10.047
14 https://doi.org/10.1016/j.jallcom.2008.04.013
15 https://doi.org/10.1016/j.jallcom.2009.08.012
16 https://doi.org/10.1016/j.jeurceramsoc.2011.10.007
17 https://doi.org/10.1016/j.matlet.2004.08.012
18 https://doi.org/10.1021/ac60363a034
19 https://doi.org/10.1021/acs.inorgchem.7b00476
20 https://doi.org/10.1021/acs.jpcc.5b10885
21 https://doi.org/10.1021/cm300466b
22 https://doi.org/10.1063/1.1400777
23 https://doi.org/10.1063/1.1847852
24 https://doi.org/10.1063/1.3327452
25 https://doi.org/10.1063/1.4916526
26 https://doi.org/10.1088/0953-8984/17/4/013
27 https://doi.org/10.1103/physrevb.21.4223
28 https://doi.org/10.1103/physrevb.62.6869
29 https://doi.org/10.1103/physrevb.68.214517
30 https://doi.org/10.1103/physrevb.73.174104
31 https://doi.org/10.1103/physrevlett.74.964
32 https://doi.org/10.1103/physrevlett.91.217001
33 https://doi.org/10.1103/physrevlett.92.247001
34 https://doi.org/10.1111/jace.12076
35 https://doi.org/10.1116/1.1247751
36 https://doi.org/10.1209/0295-5075/82/17002
37 https://doi.org/10.1557/mrs2006.46
38 schema:datePublished 2018-06
39 schema:datePublishedReg 2018-06-01
40 schema:description Co-oxides with a layered structure are of interest for high-temperature thermoelectric applications as they can be tuned to enhance their electrical conductivity while retaining their low thermal conductivity. The figure-of-merit of NayCoO2 has been enhanced using the combined effects of Na-non-stoichiometry and non-isoelectronic Co-substitution. A series of compounds Na0.7Co1−xNixO2 with x ≤ 0.1 have been synthesized using conventional techniques. Structural analysis using x-ray diffraction and Rietveld refinement shows the formation of a γ-NaCoO2-type phase in all the compounds. The presence of a small amount of NiO for x > 0.05 indicates that the solubility limit of Ni in Na0.7CoO2 is 5 at.%. All the compounds have been found to be p-type with the thermopower reaching a maximum of 220 μV K−1 at 1023 K for x = 0.1. The thermopower has been found to vary linearly with temperature for all the compounds; a degenerate metallic behavior. The electrical resistivity varies between 3 and 10 mΩ cm at all temperatures and has a metallic temperature dependence in agreement with the thermopower results. The power factor for the x = 0.1 compound reaches a maximum value of 0.55 mW m−1 K−2 at ∼ 900 K compared to 0.45 mW m−1 K−2 for the compound with no substitution. The thermal conductivity at 1023 K decreases from 1.2 to 0.9 W m−1 K−1 for x = 0.1. These factors lead to an increase of the figure-of-merit, zT, to 0.58 at 1023 K for x = 0.1, an increase of 57% compared to the unsubstituted compound. The magnetic studies show that Na0.7CoO2 is paramagnetic with an antiferromagnetic transition at ∼ 36 K. Substitution of Ni2+ for Co3+ has been found to induce a ferromagnetic-like transition at ∼ 240 K which is suppressed at high fields.
41 schema:genre research_article
42 schema:inLanguage en
43 schema:isAccessibleForFree false
44 schema:isPartOf N58123e47ef2949339a8d523a002af776
45 N7f84b49444ca4ec9ba2b31e1698b33e2
46 sg:journal.1136213
47 schema:name Enhancing Thermoelectric Figure-of-Merit of Polycrystalline NayCoO2 by a Combination of Non-stoichiometry and Co-substitution
48 schema:pagination 3230-3237
49 schema:productId N09af035d9f9c44a1b132ae6bc1d71523
50 N7f854b01e11740a4a529b3dd916ec0c8
51 Nb1b1ce0a58764dbcad3128d7449b8436
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101514233
53 https://doi.org/10.1007/s11664-018-6186-9
54 schema:sdDatePublished 2019-04-11T11:32
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher Ndf657d6c8df744b788e19ae34678cb6c
57 schema:url https://link.springer.com/10.1007%2Fs11664-018-6186-9
58 sgo:license sg:explorer/license/
59 sgo:sdDataset articles
60 rdf:type schema:ScholarlyArticle
61 N09af035d9f9c44a1b132ae6bc1d71523 schema:name dimensions_id
62 schema:value pub.1101514233
63 rdf:type schema:PropertyValue
64 N58123e47ef2949339a8d523a002af776 schema:issueNumber 6
65 rdf:type schema:PublicationIssue
66 N793bf486baf14830910f67ba5415b2ae rdf:first sg:person.013516255266.42
67 rdf:rest Ne8f61643278d49a8b9fa56ac1b82698f
68 N7f84b49444ca4ec9ba2b31e1698b33e2 schema:volumeNumber 47
69 rdf:type schema:PublicationVolume
70 N7f854b01e11740a4a529b3dd916ec0c8 schema:name readcube_id
71 schema:value dfb922ae4767e26a1b3d47ef76370269f074e065e3ea8e54115116b0cdd3a1fe
72 rdf:type schema:PropertyValue
73 Nb1b1ce0a58764dbcad3128d7449b8436 schema:name doi
74 schema:value 10.1007/s11664-018-6186-9
75 rdf:type schema:PropertyValue
76 Ndf657d6c8df744b788e19ae34678cb6c schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Ne8f61643278d49a8b9fa56ac1b82698f rdf:first sg:person.01325463133.20
79 rdf:rest rdf:nil
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
84 schema:name Materials Engineering
85 rdf:type schema:DefinedTerm
86 sg:journal.1136213 schema:issn 0361-5235
87 1543-186X
88 schema:name Journal of Electronic Materials
89 rdf:type schema:Periodical
90 sg:person.01325463133.20 schema:affiliation https://www.grid.ac/institutes/grid.417971.d
91 schema:familyName Vitta
92 schema:givenName Satish
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01325463133.20
94 rdf:type schema:Person
95 sg:person.013516255266.42 schema:affiliation https://www.grid.ac/institutes/grid.417971.d
96 schema:familyName Mallick
97 schema:givenName Md. Mofasser
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013516255266.42
99 rdf:type schema:Person
100 sg:pub.10.1023/b:jmsc.0000034151.93222.18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045594773
101 https://doi.org/10.1023/b:jmsc.0000034151.93222.18
102 rdf:type schema:CreativeWork
103 sg:pub.10.1038/nature01877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044565704
104 https://doi.org/10.1038/nature01877
105 rdf:type schema:CreativeWork
106 sg:pub.10.1038/nmat2090 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014989328
107 https://doi.org/10.1038/nmat2090
108 rdf:type schema:CreativeWork
109 sg:pub.10.1134/s0020168516030079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018007276
110 https://doi.org/10.1134/s0020168516030079
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0022-3093(89)90179-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047158544
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/0025-5408(94)90152-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1044584812
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/0921-4534(91)90797-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037061815
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/j.jallcom.2005.07.067 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001050934
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.jallcom.2005.08.035 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023199514
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.jallcom.2006.10.047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026263238
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1016/j.jallcom.2008.04.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028483758
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1016/j.jallcom.2009.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022868796
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1016/j.jeurceramsoc.2011.10.007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002461057
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1016/j.matlet.2004.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038261853
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1021/ac60363a034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055068172
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1021/acs.inorgchem.7b00476 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085322015
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1021/acs.jpcc.5b10885 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055110466
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1021/cm300466b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055414811
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1063/1.1400777 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057702923
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1063/1.1847852 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027451398
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1063/1.3327452 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013740915
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1063/1.4916526 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012476276
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1088/0953-8984/17/4/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040092595
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1103/physrevb.21.4223 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060527297
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1103/physrevb.62.6869 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060597888
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1103/physrevb.68.214517 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049384637
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1103/physrevb.73.174104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052967212
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1103/physrevlett.74.964 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811459
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1103/physrevlett.91.217001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037316156
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1103/physrevlett.92.247001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018103064
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1111/jace.12076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053572993
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1116/1.1247751 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062163731
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1209/0295-5075/82/17002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009051340
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1557/mrs2006.46 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067969127
171 rdf:type schema:CreativeWork
172 https://www.grid.ac/institutes/grid.417971.d schema:alternateName Indian Institute of Technology Bombay
173 schema:name Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, 400076, Mumbai, India
174 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...