Oxidation Studies of Cu12Sb3.9Bi0.1S10Se3 Tetrahedrite View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-05

AUTHORS

António P. Gonçalves, Elsa B. Lopes, Maria F. Montemor, Judith Monnier, Bertrand Lenoir

ABSTRACT

Tetrahedrites are widespread minerals with general formula Cu10M2Sb4S13 (M = Cu, Mn, Fe, Co, Ni, Zn). Their thermoelectric properties can be tuned through proper doping and reach zT values as high as 1, being considered promising low-cost thermoelectric materials. However, for practical application in thermoelectric devices, it is necessary to establish their ability to operate for long periods under working temperatures and atmospheres. We present herein studies of oxidation in air of Cu12Sb3.9Bi0.1S10Se3 tetrahedrite at four different temperatures between 230°C and 375°C, together with preliminary corrosion studies in aggressive NaCl electrolyte. Surface oxidation already occurs at the lower studied temperatures, but a strong decrease of the oxidation rate is observed for materials treated at intermediate temperature (275°C), where a continuous surface layer of Cu2−xS forms, pointing to a protective effect of this layer that could be applied in devices operating at such temperatures. For the material treated at higher temperatures (350°C and 375°C), no tetrahedrite phases were seen after 1500 h, which can be related to the (tetrahedrite + chalcostibite + antimony → skinnerite) reaction that occurs above 280°C. Corrosion studies indicated that increasing the oxidation temperature unfortunately leads to a decrease of the corrosion resistance of tetrahedrite-based phases. More... »

PAGES

2880-2889

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-018-6141-9

DOI

http://dx.doi.org/10.1007/s11664-018-6141-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1101267636


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Lisbon", 
          "id": "https://www.grid.ac/institutes/grid.9983.b", 
          "name": [
            "C2TN, Instituto Superior T\u00e9cnico, Centro de Ci\u00eancias e Tecnologias Nucleares, Departamento de Engenharia e Ci\u00eancias Nucleares, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gon\u00e7alves", 
        "givenName": "Ant\u00f3nio P.", 
        "id": "sg:person.013400654515.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400654515.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Lisbon", 
          "id": "https://www.grid.ac/institutes/grid.9983.b", 
          "name": [
            "C2TN, Instituto Superior T\u00e9cnico, Centro de Ci\u00eancias e Tecnologias Nucleares, Departamento de Engenharia e Ci\u00eancias Nucleares, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lopes", 
        "givenName": "Elsa B.", 
        "id": "sg:person.0625175327.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625175327.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Lisbon", 
          "id": "https://www.grid.ac/institutes/grid.9983.b", 
          "name": [
            "CQE, DEQ, Instituto Superior T\u00e9cnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Montemor", 
        "givenName": "Maria F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "ICMPE (UMR 7182), CNRS, UPEC, Universit\u00e9 Paris Est, 94320, Thiais, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Monnier", 
        "givenName": "Judith", 
        "id": "sg:person.011473303536.69", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011473303536.69"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Lorraine", 
          "id": "https://www.grid.ac/institutes/grid.29172.3f", 
          "name": [
            "Institut Jean Lamour (UMR 7198) CNRS-UL, Parc de Saurupt, CS 50840, Universit\u00e9 de Lorraine, 54011, Nancy, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lenoir", 
        "givenName": "Bertrand", 
        "id": "sg:person.01276426466.94", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276426466.94"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.actamat.2015.08.040", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000956196"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.intermet.2016.08.003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006974357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6ra21482g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010499113"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adfm.201500766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010961676"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jallcom.2015.02.045", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012314457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c6dt00564k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017626004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3cp50920f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029108685"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-016-4826-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030302612", 
          "https://doi.org/10.1007/s11664-016-4826-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-016-4826-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030302612", 
          "https://doi.org/10.1007/s11664-016-4826-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/jace.13838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030736546"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c5tc01636c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032720628"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0034-4885/51/4/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034496695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/aenm.201200650", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037167170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1524/zkri.1964.119.5-6.437", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037787960"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm404026k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045594617"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c4cp04039b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053736789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acs.chemmater.5b04796", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053947115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm502570b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053985237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4789389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058068454"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.141.3583.804", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062480599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1180/minmag.1997.061.404.07", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064120425"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2113/gsecongeo.67.7.924", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068930379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4028/www.scientific.net/msf.587-588.435", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072128778"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-05", 
    "datePublishedReg": "2018-05-01", 
    "description": "Tetrahedrites are widespread minerals with general formula Cu10M2Sb4S13 (M = Cu, Mn, Fe, Co, Ni, Zn). Their thermoelectric properties can be tuned through proper doping and reach zT values as high as 1, being considered promising low-cost thermoelectric materials. However, for practical application in thermoelectric devices, it is necessary to establish their ability to operate for long periods under working temperatures and atmospheres. We present herein studies of oxidation in air of Cu12Sb3.9Bi0.1S10Se3 tetrahedrite at four different temperatures between 230\u00b0C and 375\u00b0C, together with preliminary corrosion studies in aggressive NaCl electrolyte. Surface oxidation already occurs at the lower studied temperatures, but a strong decrease of the oxidation rate is observed for materials treated at intermediate temperature (275\u00b0C), where a continuous surface layer of Cu2\u2212xS forms, pointing to a protective effect of this layer that could be applied in devices operating at such temperatures. For the material treated at higher temperatures (350\u00b0C and 375\u00b0C), no tetrahedrite phases were seen after 1500 h, which can be related to the (tetrahedrite + chalcostibite + antimony \u2192 skinnerite) reaction that occurs above 280\u00b0C. Corrosion studies indicated that increasing the oxidation temperature unfortunately leads to a decrease of the corrosion resistance of tetrahedrite-based phases.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11664-018-6141-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Oxidation Studies of Cu12Sb3.9Bi0.1S10Se3 Tetrahedrite", 
    "pagination": "2880-2889", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "c61b584f3d0527d7a15ec20e3346f257488b7a5d8f4fd4038eec9844abb3c6b4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-018-6141-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1101267636"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-018-6141-9", 
      "https://app.dimensions.ai/details/publication/pub.1101267636"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54338_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11664-018-6141-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6141-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6141-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6141-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-018-6141-9'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-018-6141-9 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6b80c52ccf364ec1917071a8912d6829
4 schema:citation sg:pub.10.1007/s11664-016-4826-5
5 https://doi.org/10.1002/adfm.201500766
6 https://doi.org/10.1002/aenm.201200650
7 https://doi.org/10.1016/j.actamat.2015.08.040
8 https://doi.org/10.1016/j.intermet.2016.08.003
9 https://doi.org/10.1016/j.jallcom.2015.02.045
10 https://doi.org/10.1021/acs.chemmater.5b04796
11 https://doi.org/10.1021/cm404026k
12 https://doi.org/10.1021/cm502570b
13 https://doi.org/10.1039/c3cp50920f
14 https://doi.org/10.1039/c4cp04039b
15 https://doi.org/10.1039/c5tc01636c
16 https://doi.org/10.1039/c6dt00564k
17 https://doi.org/10.1039/c6ra21482g
18 https://doi.org/10.1063/1.4789389
19 https://doi.org/10.1088/0034-4885/51/4/001
20 https://doi.org/10.1111/jace.13838
21 https://doi.org/10.1126/science.141.3583.804
22 https://doi.org/10.1180/minmag.1997.061.404.07
23 https://doi.org/10.1524/zkri.1964.119.5-6.437
24 https://doi.org/10.2113/gsecongeo.67.7.924
25 https://doi.org/10.4028/www.scientific.net/msf.587-588.435
26 schema:datePublished 2018-05
27 schema:datePublishedReg 2018-05-01
28 schema:description Tetrahedrites are widespread minerals with general formula Cu10M2Sb4S13 (M = Cu, Mn, Fe, Co, Ni, Zn). Their thermoelectric properties can be tuned through proper doping and reach zT values as high as 1, being considered promising low-cost thermoelectric materials. However, for practical application in thermoelectric devices, it is necessary to establish their ability to operate for long periods under working temperatures and atmospheres. We present herein studies of oxidation in air of Cu12Sb3.9Bi0.1S10Se3 tetrahedrite at four different temperatures between 230°C and 375°C, together with preliminary corrosion studies in aggressive NaCl electrolyte. Surface oxidation already occurs at the lower studied temperatures, but a strong decrease of the oxidation rate is observed for materials treated at intermediate temperature (275°C), where a continuous surface layer of Cu2−xS forms, pointing to a protective effect of this layer that could be applied in devices operating at such temperatures. For the material treated at higher temperatures (350°C and 375°C), no tetrahedrite phases were seen after 1500 h, which can be related to the (tetrahedrite + chalcostibite + antimony → skinnerite) reaction that occurs above 280°C. Corrosion studies indicated that increasing the oxidation temperature unfortunately leads to a decrease of the corrosion resistance of tetrahedrite-based phases.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N2ff97d17167b4617960f80286c775fca
33 Nf9451a2b984d4bb189789ec068888f42
34 sg:journal.1136213
35 schema:name Oxidation Studies of Cu12Sb3.9Bi0.1S10Se3 Tetrahedrite
36 schema:pagination 2880-2889
37 schema:productId N3bf6034676424771aa93424a8bf4166e
38 N3d425434431b4f069ac5e0e7f7e82849
39 N7b9202fdf5af48d3b713bfbc7944aea4
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101267636
41 https://doi.org/10.1007/s11664-018-6141-9
42 schema:sdDatePublished 2019-04-11T10:22
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher Ne7f1367745a44297b961776bf2fb6767
45 schema:url https://link.springer.com/10.1007%2Fs11664-018-6141-9
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N1640d7a8b4ed4dd1ab5b2a480604092e schema:name ICMPE (UMR 7182), CNRS, UPEC, Université Paris Est, 94320, Thiais, France
50 rdf:type schema:Organization
51 N2ff97d17167b4617960f80286c775fca schema:volumeNumber 47
52 rdf:type schema:PublicationVolume
53 N3bf6034676424771aa93424a8bf4166e schema:name readcube_id
54 schema:value c61b584f3d0527d7a15ec20e3346f257488b7a5d8f4fd4038eec9844abb3c6b4
55 rdf:type schema:PropertyValue
56 N3d425434431b4f069ac5e0e7f7e82849 schema:name dimensions_id
57 schema:value pub.1101267636
58 rdf:type schema:PropertyValue
59 N6b80c52ccf364ec1917071a8912d6829 rdf:first sg:person.013400654515.98
60 rdf:rest Nd5d37677a2c142ec88ac83d62db8c507
61 N7b9202fdf5af48d3b713bfbc7944aea4 schema:name doi
62 schema:value 10.1007/s11664-018-6141-9
63 rdf:type schema:PropertyValue
64 N8150392bca4e466ba983a0e3111cce47 rdf:first Ne2f40f1e0fe3412dabea8ddb47e9512a
65 rdf:rest N93b38e89f0c24c4086ea5cd6aa3161fe
66 N93b38e89f0c24c4086ea5cd6aa3161fe rdf:first sg:person.011473303536.69
67 rdf:rest Nd0f5b1e44a13415295ba12b9ebe394a6
68 Nd0f5b1e44a13415295ba12b9ebe394a6 rdf:first sg:person.01276426466.94
69 rdf:rest rdf:nil
70 Nd5d37677a2c142ec88ac83d62db8c507 rdf:first sg:person.0625175327.12
71 rdf:rest N8150392bca4e466ba983a0e3111cce47
72 Ne2f40f1e0fe3412dabea8ddb47e9512a schema:affiliation https://www.grid.ac/institutes/grid.9983.b
73 schema:familyName Montemor
74 schema:givenName Maria F.
75 rdf:type schema:Person
76 Ne7f1367745a44297b961776bf2fb6767 schema:name Springer Nature - SN SciGraph project
77 rdf:type schema:Organization
78 Nf9451a2b984d4bb189789ec068888f42 schema:issueNumber 5
79 rdf:type schema:PublicationIssue
80 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
81 schema:name Engineering
82 rdf:type schema:DefinedTerm
83 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
84 schema:name Materials Engineering
85 rdf:type schema:DefinedTerm
86 sg:journal.1136213 schema:issn 0361-5235
87 1543-186X
88 schema:name Journal of Electronic Materials
89 rdf:type schema:Periodical
90 sg:person.011473303536.69 schema:affiliation N1640d7a8b4ed4dd1ab5b2a480604092e
91 schema:familyName Monnier
92 schema:givenName Judith
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011473303536.69
94 rdf:type schema:Person
95 sg:person.01276426466.94 schema:affiliation https://www.grid.ac/institutes/grid.29172.3f
96 schema:familyName Lenoir
97 schema:givenName Bertrand
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276426466.94
99 rdf:type schema:Person
100 sg:person.013400654515.98 schema:affiliation https://www.grid.ac/institutes/grid.9983.b
101 schema:familyName Gonçalves
102 schema:givenName António P.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013400654515.98
104 rdf:type schema:Person
105 sg:person.0625175327.12 schema:affiliation https://www.grid.ac/institutes/grid.9983.b
106 schema:familyName Lopes
107 schema:givenName Elsa B.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625175327.12
109 rdf:type schema:Person
110 sg:pub.10.1007/s11664-016-4826-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030302612
111 https://doi.org/10.1007/s11664-016-4826-5
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1002/adfm.201500766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010961676
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1002/aenm.201200650 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037167170
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.actamat.2015.08.040 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000956196
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.intermet.2016.08.003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006974357
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jallcom.2015.02.045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012314457
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1021/acs.chemmater.5b04796 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053947115
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1021/cm404026k schema:sameAs https://app.dimensions.ai/details/publication/pub.1045594617
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1021/cm502570b schema:sameAs https://app.dimensions.ai/details/publication/pub.1053985237
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1039/c3cp50920f schema:sameAs https://app.dimensions.ai/details/publication/pub.1029108685
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1039/c4cp04039b schema:sameAs https://app.dimensions.ai/details/publication/pub.1053736789
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1039/c5tc01636c schema:sameAs https://app.dimensions.ai/details/publication/pub.1032720628
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1039/c6dt00564k schema:sameAs https://app.dimensions.ai/details/publication/pub.1017626004
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1039/c6ra21482g schema:sameAs https://app.dimensions.ai/details/publication/pub.1010499113
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.4789389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058068454
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1088/0034-4885/51/4/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034496695
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1111/jace.13838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030736546
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1126/science.141.3583.804 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062480599
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1180/minmag.1997.061.404.07 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064120425
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1524/zkri.1964.119.5-6.437 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037787960
150 rdf:type schema:CreativeWork
151 https://doi.org/10.2113/gsecongeo.67.7.924 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068930379
152 rdf:type schema:CreativeWork
153 https://doi.org/10.4028/www.scientific.net/msf.587-588.435 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072128778
154 rdf:type schema:CreativeWork
155 https://www.grid.ac/institutes/grid.29172.3f schema:alternateName University of Lorraine
156 schema:name Institut Jean Lamour (UMR 7198) CNRS-UL, Parc de Saurupt, CS 50840, Université de Lorraine, 54011, Nancy, France
157 rdf:type schema:Organization
158 https://www.grid.ac/institutes/grid.9983.b schema:alternateName University of Lisbon
159 schema:name C2TN, Instituto Superior Técnico, Centro de Ciências e Tecnologias Nucleares, Departamento de Engenharia e Ciências Nucleares, Universidade de Lisboa, Estrada Nacional 10, 2695-066, Bobadela LRS, Portugal
160 CQE, DEQ, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...