High-Temperature Thermoelectric Properties of Perovskite-Type Pr0.9Sr0.1Mn1−xFexO3 (0 ≤ x ≤ 1) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02-24

AUTHORS

H. Nakatsugawa, M. Saito, Y. Okamoto

ABSTRACT

Polycrystalline samples of Pr0.9Sr0.1Mn1−xFexO3 (0 ≤ x ≤ 1) have been synthesized using a conventional solid-state reaction method, and the crystal structure studied at room temperature. The magnetic susceptibility was measured from 5 K to 350 K. The electrical resistivity, Seebeck coefficient, and thermal conductivity were investigated as functions of temperature below 850 K. For all samples, the perovskite structure at room temperature exhibited orthorhombic Pbnm phase. While the Pr0.9Sr0.1MnO3 (x = 0) sample exhibited ferromagnetic-like ground state below TC = 145 K (Curie temperature), the ferromagnetic transition temperature TC decreased with increasing x. The Seebeck coefficient of the samples with 0 ≤ x ≤ 0.8 decreased with increasing temperature because of double-exchange interaction of Mn ions. In fact, the carrier type for x = 0 changed from hole-like to electron-like behavior above 800 K. On the other hand, the samples with x ≥ 0.9 showed large positive Seebeck coefficient over the entire temperature range, indicating that the low-spin state of Fe ions dominated the electronic structure for this x range. In particular, the sample with x = 1 exhibited p-type thermoelectric properties with relatively high Seebeck coefficient, moderate electrical resistivity, and low thermal conductivity. Thus, the sample with x = 1 showed power factor of 20 μW m−1 K−2 at 850 K leading to ZT of 0.024 at this temperature, indicating that hole-doped perovskite-type iron oxide is a good candidate high-temperature thermoelectric p-type oxide. More... »

PAGES

3262-3272

References to SciGraph publications

  • 1926-05. Die Gesetze der Krystallochemie in THE SCIENCE OF NATURE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11664-017-5366-3

    DOI

    http://dx.doi.org/10.1007/s11664-017-5366-3

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1083876080


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Yokohama National University, 79-5 Tokiwadai, Hodogaya-Ku, 240-8501, Yokohama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.268446.a", 
              "name": [
                "Yokohama National University, 79-5 Tokiwadai, Hodogaya-Ku, 240-8501, Yokohama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nakatsugawa", 
            "givenName": "H.", 
            "id": "sg:person.011435000737.57", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011435000737.57"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, 221-8686, Yokohama, Japan", 
              "id": "http://www.grid.ac/institutes/grid.411995.1", 
              "name": [
                "Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, 221-8686, Yokohama, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Saito", 
            "givenName": "M.", 
            "id": "sg:person.014053616735.96", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014053616735.96"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "National Defense Academy, 1-10-20 Hashirimizu, 239-8686, Yokosuka, Japan", 
              "id": "http://www.grid.ac/institutes/grid.260563.4", 
              "name": [
                "National Defense Academy, 1-10-20 Hashirimizu, 239-8686, Yokosuka, Japan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Okamoto", 
            "givenName": "Y.", 
            "id": "sg:person.012773317737.11", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012773317737.11"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf01507527", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028640780", 
              "https://doi.org/10.1007/bf01507527"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-02-24", 
        "datePublishedReg": "2017-02-24", 
        "description": "Polycrystalline samples of Pr0.9Sr0.1Mn1\u2212xFexO3 (0\u00a0\u2264\u00a0x\u00a0\u2264\u00a01) have been synthesized using a conventional solid-state reaction method, and the crystal structure studied at room temperature. The magnetic susceptibility was measured from 5\u00a0K to 350\u00a0K. The electrical resistivity, Seebeck coefficient, and thermal conductivity were investigated as functions of temperature below 850\u00a0K. For all samples, the perovskite structure at room temperature exhibited orthorhombic Pbnm phase. While the Pr0.9Sr0.1MnO3 (x\u00a0=\u00a00) sample exhibited ferromagnetic-like ground state below TC\u00a0=\u00a0145\u00a0K (Curie temperature), the ferromagnetic transition temperature TC decreased with increasing x. The Seebeck coefficient of the samples with 0\u00a0\u2264\u00a0x\u00a0\u2264\u00a00.8 decreased with increasing temperature because of double-exchange interaction of Mn ions. In fact, the carrier type for x\u00a0=\u00a00 changed from hole-like to electron-like behavior above 800\u00a0K. On the other hand, the samples with x\u00a0\u2265\u00a00.9 showed large positive Seebeck coefficient over the entire temperature range, indicating that the low-spin state of Fe ions dominated the electronic structure for this x range. In particular, the sample with x\u00a0=\u00a01 exhibited p-type thermoelectric properties with relatively high Seebeck coefficient, moderate electrical resistivity, and low thermal conductivity. Thus, the sample with x\u00a0=\u00a01 showed power factor of 20\u00a0\u03bcW\u00a0m\u22121\u00a0K\u22122 at 850\u00a0K leading to ZT of 0.024 at this temperature, indicating that hole-doped perovskite-type iron oxide is a good candidate high-temperature thermoelectric p-type oxide.", 
        "genre": "article", 
        "id": "sg:pub.10.1007/s11664-017-5366-3", 
        "isAccessibleForFree": false, 
        "isFundedItemOf": [
          {
            "id": "sg:grant.5869636", 
            "type": "MonetaryGrant"
          }
        ], 
        "isPartOf": [
          {
            "id": "sg:journal.1136213", 
            "issn": [
              "0361-5235", 
              "1543-186X"
            ], 
            "name": "Journal of Electronic Materials", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "5", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "46"
          }
        ], 
        "keywords": [
          "ferromagnetic-like ground state", 
          "Seebeck coefficient", 
          "ferromagnetic transition temperature TC", 
          "thermal conductivity", 
          "transition temperature Tc", 
          "thermoelectric properties", 
          "electron-like behavior", 
          "moderate electrical resistivity", 
          "electrical resistivity", 
          "double exchange interaction", 
          "low thermal conductivity", 
          "p-type thermoelectric properties", 
          "conventional solid-state reaction method", 
          "temperature thermoelectric properties", 
          "p-type oxides", 
          "high Seebeck coefficient", 
          "temperature Tc", 
          "large positive Seebeck coefficient", 
          "room temperature", 
          "polycrystalline samples", 
          "solid-state reaction method", 
          "power factor", 
          "magnetic susceptibility", 
          "positive Seebeck coefficient", 
          "low-spin state", 
          "entire temperature range", 
          "ground state", 
          "perovskite structure", 
          "orthorhombic Pbnm phase", 
          "iron oxide", 
          "x range", 
          "carrier type", 
          "temperature range", 
          "electronic structure", 
          "Mn ions", 
          "Pbnm phase", 
          "reaction method", 
          "function of temperature", 
          "Tc", 
          "perovskite type", 
          "conductivity", 
          "temperature", 
          "resistivity", 
          "oxide", 
          "coefficient", 
          "Fe ions", 
          "properties", 
          "ZT", 
          "structure", 
          "range", 
          "state", 
          "ions", 
          "phase", 
          "function", 
          "crystal structure", 
          "behavior", 
          "samples", 
          "method", 
          "fact", 
          "interaction", 
          "types", 
          "susceptibility", 
          "hand", 
          "factors"
        ], 
        "name": "High-Temperature Thermoelectric Properties of Perovskite-Type Pr0.9Sr0.1Mn1\u2212xFexO3 (0 \u2264 x \u2264 1)", 
        "pagination": "3262-3272", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1083876080"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11664-017-5366-3"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11664-017-5366-3", 
          "https://app.dimensions.ai/details/publication/pub.1083876080"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-12-01T06:36", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_733.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1007/s11664-017-5366-3"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-017-5366-3'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-017-5366-3'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-017-5366-3'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-017-5366-3'


     

    This table displays all metadata directly associated to this object as RDF triples.

    147 TRIPLES      21 PREDICATES      89 URIs      80 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11664-017-5366-3 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N79d534102da94b35a7cec7f4d1e7dc73
    4 schema:citation sg:pub.10.1007/bf01507527
    5 schema:datePublished 2017-02-24
    6 schema:datePublishedReg 2017-02-24
    7 schema:description Polycrystalline samples of Pr0.9Sr0.1Mn1−xFexO3 (0 ≤ x ≤ 1) have been synthesized using a conventional solid-state reaction method, and the crystal structure studied at room temperature. The magnetic susceptibility was measured from 5 K to 350 K. The electrical resistivity, Seebeck coefficient, and thermal conductivity were investigated as functions of temperature below 850 K. For all samples, the perovskite structure at room temperature exhibited orthorhombic Pbnm phase. While the Pr0.9Sr0.1MnO3 (x = 0) sample exhibited ferromagnetic-like ground state below TC = 145 K (Curie temperature), the ferromagnetic transition temperature TC decreased with increasing x. The Seebeck coefficient of the samples with 0 ≤ x ≤ 0.8 decreased with increasing temperature because of double-exchange interaction of Mn ions. In fact, the carrier type for x = 0 changed from hole-like to electron-like behavior above 800 K. On the other hand, the samples with x ≥ 0.9 showed large positive Seebeck coefficient over the entire temperature range, indicating that the low-spin state of Fe ions dominated the electronic structure for this x range. In particular, the sample with x = 1 exhibited p-type thermoelectric properties with relatively high Seebeck coefficient, moderate electrical resistivity, and low thermal conductivity. Thus, the sample with x = 1 showed power factor of 20 μW m−1 K−2 at 850 K leading to ZT of 0.024 at this temperature, indicating that hole-doped perovskite-type iron oxide is a good candidate high-temperature thermoelectric p-type oxide.
    8 schema:genre article
    9 schema:isAccessibleForFree false
    10 schema:isPartOf N64050e86881d4b33ae2e19f600ba5a19
    11 N6a2321175d9d4cf88bf0d3e9152ace26
    12 sg:journal.1136213
    13 schema:keywords Fe ions
    14 Mn ions
    15 Pbnm phase
    16 Seebeck coefficient
    17 Tc
    18 ZT
    19 behavior
    20 carrier type
    21 coefficient
    22 conductivity
    23 conventional solid-state reaction method
    24 crystal structure
    25 double exchange interaction
    26 electrical resistivity
    27 electron-like behavior
    28 electronic structure
    29 entire temperature range
    30 fact
    31 factors
    32 ferromagnetic transition temperature TC
    33 ferromagnetic-like ground state
    34 function
    35 function of temperature
    36 ground state
    37 hand
    38 high Seebeck coefficient
    39 interaction
    40 ions
    41 iron oxide
    42 large positive Seebeck coefficient
    43 low thermal conductivity
    44 low-spin state
    45 magnetic susceptibility
    46 method
    47 moderate electrical resistivity
    48 orthorhombic Pbnm phase
    49 oxide
    50 p-type oxides
    51 p-type thermoelectric properties
    52 perovskite structure
    53 perovskite type
    54 phase
    55 polycrystalline samples
    56 positive Seebeck coefficient
    57 power factor
    58 properties
    59 range
    60 reaction method
    61 resistivity
    62 room temperature
    63 samples
    64 solid-state reaction method
    65 state
    66 structure
    67 susceptibility
    68 temperature
    69 temperature Tc
    70 temperature range
    71 temperature thermoelectric properties
    72 thermal conductivity
    73 thermoelectric properties
    74 transition temperature Tc
    75 types
    76 x range
    77 schema:name High-Temperature Thermoelectric Properties of Perovskite-Type Pr0.9Sr0.1Mn1−xFexO3 (0 ≤ x ≤ 1)
    78 schema:pagination 3262-3272
    79 schema:productId N22e4f38a75bf46fa8d7d96a7ed074a54
    80 N2ab9dc02b38a450daf2f2e99059f0ce0
    81 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083876080
    82 https://doi.org/10.1007/s11664-017-5366-3
    83 schema:sdDatePublished 2022-12-01T06:36
    84 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    85 schema:sdPublisher Na72f27769189439a956db737a7b26ff9
    86 schema:url https://doi.org/10.1007/s11664-017-5366-3
    87 sgo:license sg:explorer/license/
    88 sgo:sdDataset articles
    89 rdf:type schema:ScholarlyArticle
    90 N048debc1c63f4a16878a18218b1fd6b1 rdf:first sg:person.014053616735.96
    91 rdf:rest N2186d439f97c40ae8279b9b077573ce6
    92 N2186d439f97c40ae8279b9b077573ce6 rdf:first sg:person.012773317737.11
    93 rdf:rest rdf:nil
    94 N22e4f38a75bf46fa8d7d96a7ed074a54 schema:name dimensions_id
    95 schema:value pub.1083876080
    96 rdf:type schema:PropertyValue
    97 N2ab9dc02b38a450daf2f2e99059f0ce0 schema:name doi
    98 schema:value 10.1007/s11664-017-5366-3
    99 rdf:type schema:PropertyValue
    100 N64050e86881d4b33ae2e19f600ba5a19 schema:volumeNumber 46
    101 rdf:type schema:PublicationVolume
    102 N6a2321175d9d4cf88bf0d3e9152ace26 schema:issueNumber 5
    103 rdf:type schema:PublicationIssue
    104 N79d534102da94b35a7cec7f4d1e7dc73 rdf:first sg:person.011435000737.57
    105 rdf:rest N048debc1c63f4a16878a18218b1fd6b1
    106 Na72f27769189439a956db737a7b26ff9 schema:name Springer Nature - SN SciGraph project
    107 rdf:type schema:Organization
    108 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    109 schema:name Engineering
    110 rdf:type schema:DefinedTerm
    111 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    112 schema:name Materials Engineering
    113 rdf:type schema:DefinedTerm
    114 sg:grant.5869636 http://pending.schema.org/fundedItem sg:pub.10.1007/s11664-017-5366-3
    115 rdf:type schema:MonetaryGrant
    116 sg:journal.1136213 schema:issn 0361-5235
    117 1543-186X
    118 schema:name Journal of Electronic Materials
    119 schema:publisher Springer Nature
    120 rdf:type schema:Periodical
    121 sg:person.011435000737.57 schema:affiliation grid-institutes:grid.268446.a
    122 schema:familyName Nakatsugawa
    123 schema:givenName H.
    124 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011435000737.57
    125 rdf:type schema:Person
    126 sg:person.012773317737.11 schema:affiliation grid-institutes:grid.260563.4
    127 schema:familyName Okamoto
    128 schema:givenName Y.
    129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012773317737.11
    130 rdf:type schema:Person
    131 sg:person.014053616735.96 schema:affiliation grid-institutes:grid.411995.1
    132 schema:familyName Saito
    133 schema:givenName M.
    134 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014053616735.96
    135 rdf:type schema:Person
    136 sg:pub.10.1007/bf01507527 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028640780
    137 https://doi.org/10.1007/bf01507527
    138 rdf:type schema:CreativeWork
    139 grid-institutes:grid.260563.4 schema:alternateName National Defense Academy, 1-10-20 Hashirimizu, 239-8686, Yokosuka, Japan
    140 schema:name National Defense Academy, 1-10-20 Hashirimizu, 239-8686, Yokosuka, Japan
    141 rdf:type schema:Organization
    142 grid-institutes:grid.268446.a schema:alternateName Yokohama National University, 79-5 Tokiwadai, Hodogaya-Ku, 240-8501, Yokohama, Japan
    143 schema:name Yokohama National University, 79-5 Tokiwadai, Hodogaya-Ku, 240-8501, Yokohama, Japan
    144 rdf:type schema:Organization
    145 grid-institutes:grid.411995.1 schema:alternateName Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, 221-8686, Yokohama, Japan
    146 schema:name Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, 221-8686, Yokohama, Japan
    147 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...