Facile Control of Interfacial Energy-Barrier Scattering in Antimony Telluride Electrodeposits View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-18

AUTHORS

Jiwon Kim, Hyunsung Jung, Jae-Hong Lim, Nosang V. Myung

ABSTRACT

The augmented thermoelectric performance of nanocrystalline antimony telluride (Sb2Te3) films is investigated by introducing interfacial energy-barrier scattering (i.e., barrier heights), which occurs at both the grain boundaries and the interfaces with embedded second phases. It is postulated that the barriers created at both the interfaces and boundaries filter the low-energy carriers, thus favoring a high Seebeck coefficient. A facile, but high-precision composition-controlled electrodeposition technique is employed to synthesize single-phase nanocrystalline Sb2Te3 and nanocomposite Te/Sb2Te3. Both the initial composition of the Sb-Te solid solution and the post-annealing profiles are varied to control the grain size, as well as the formation of second-phase Te. The electrical and thermoelectric properties are measured and correlated with the physical properties, where an enhanced Seebeck coefficient at a fixed carrier concentration is interpreted as indicating that the energy-dependent carrier filtering effect is in force. On a promising note, modification of the Sb2Te3 film physical properties and formation of the second phase affect the interfacial energy-barrier scattering and yields an enhanced power factor. Thus, Sb2Te3 film is a promising p-type thermoelectric material for a room-temperature-operational micro-thermoelectric power generator. More... »

PAGES

2347-2355

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-016-5275-x

DOI

http://dx.doi.org/10.1007/s11664-016-5275-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1007052192


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Electrochemistry Department, Korea Institute of Materials Science, 641-831, Changwon, Korea", 
          "id": "http://www.grid.ac/institutes/grid.410902.e", 
          "name": [
            "Electrochemistry Department, Korea Institute of Materials Science, 641-831, Changwon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kim", 
        "givenName": "Jiwon", 
        "id": "sg:person.014541377206.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014541377206.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology, 660-031, Jinju, Korea", 
          "id": "http://www.grid.ac/institutes/grid.410900.c", 
          "name": [
            "Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology, 660-031, Jinju, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jung", 
        "givenName": "Hyunsung", 
        "id": "sg:person.01315074140.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315074140.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electrochemistry Department, Korea Institute of Materials Science, 641-831, Changwon, Korea", 
          "id": "http://www.grid.ac/institutes/grid.410902.e", 
          "name": [
            "Electrochemistry Department, Korea Institute of Materials Science, 641-831, Changwon, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lim", 
        "givenName": "Jae-Hong", 
        "id": "sg:person.01313214270.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313214270.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical and Environmental Engineering and Winston Chung Global Energy Center, University of California-Riverside, 92521, Riverside, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.266097.c", 
          "name": [
            "Department of Chemical and Environmental Engineering and Winston Chung Global Energy Center, University of California-Riverside, 92521, Riverside, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Myung", 
        "givenName": "Nosang V.", 
        "id": "sg:person.0605270321.85", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605270321.85"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11661-003-0246-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017409410", 
          "https://doi.org/10.1007/s11661-003-0246-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/b71138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1108494810", 
          "https://doi.org/10.1007/b71138"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045601129", 
          "https://doi.org/10.1038/nmat1807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35098012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014934672", 
          "https://doi.org/10.1038/35098012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02669225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050698789", 
          "https://doi.org/10.1007/bf02669225"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-014-3299-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037917502", 
          "https://doi.org/10.1007/s11664-014-3299-7"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-18", 
    "datePublishedReg": "2017-01-18", 
    "description": "The augmented thermoelectric performance of nanocrystalline antimony telluride (Sb2Te3) films is investigated by introducing interfacial energy-barrier scattering (i.e., barrier heights), which occurs at both the grain boundaries and the interfaces with embedded second phases. It is postulated that the barriers created at both the interfaces and boundaries filter the low-energy carriers, thus favoring a high Seebeck coefficient. A facile, but high-precision composition-controlled electrodeposition technique is employed to synthesize single-phase nanocrystalline Sb2Te3 and nanocomposite Te/Sb2Te3. Both the initial composition of the Sb-Te solid solution and the post-annealing profiles are varied to control the grain size, as well as the formation of second-phase Te. The electrical and thermoelectric properties are measured and correlated with the physical properties, where an enhanced Seebeck coefficient at a fixed carrier concentration is interpreted as indicating that the energy-dependent carrier filtering effect is in force. On a promising note, modification of the Sb2Te3 film physical properties and formation of the second phase affect the interfacial energy-barrier scattering and yields an enhanced power factor. Thus, Sb2Te3 film is a promising p-type thermoelectric material for a room-temperature-operational micro-thermoelectric power generator.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11664-016-5275-x", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "keywords": [
      "Seebeck coefficient", 
      "promising p-type thermoelectric material", 
      "enhanced power factor", 
      "carrier filtering effect", 
      "p-type thermoelectric material", 
      "low-energy carriers", 
      "antimony telluride films", 
      "high Seebeck coefficient", 
      "enhanced Seebeck coefficient", 
      "film physical properties", 
      "power generator", 
      "power factor", 
      "physical properties", 
      "thermoelectric materials", 
      "Sb2Te3 films", 
      "grain boundaries", 
      "thermoelectric performance", 
      "electrodeposition technique", 
      "grain size", 
      "thermoelectric properties", 
      "antimony telluride", 
      "telluride films", 
      "carrier concentration", 
      "facile control", 
      "solid solution", 
      "filtering effect", 
      "second phase", 
      "promising note", 
      "films", 
      "Sb2Te3", 
      "initial composition", 
      "interface", 
      "properties", 
      "facile", 
      "coefficient", 
      "boundaries", 
      "generator", 
      "scattering", 
      "phase", 
      "materials", 
      "telluride", 
      "force", 
      "carriers", 
      "performance", 
      "formation", 
      "solution", 
      "Te", 
      "size", 
      "technique", 
      "modification", 
      "composition", 
      "control", 
      "profile", 
      "concentration", 
      "effect", 
      "barriers", 
      "factors", 
      "note"
    ], 
    "name": "Facile Control of Interfacial Energy-Barrier Scattering in Antimony Telluride Electrodeposits", 
    "pagination": "2347-2355", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1007052192"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-016-5275-x"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-016-5275-x", 
      "https://app.dimensions.ai/details/publication/pub.1007052192"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_722.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11664-016-5275-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5275-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5275-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5275-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5275-x'


 

This table displays all metadata directly associated to this object as RDF triples.

166 TRIPLES      21 PREDICATES      88 URIs      74 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-016-5275-x schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N0ac21482505c4c679fa8fd68f1c8bcac
4 schema:citation sg:pub.10.1007/b71138
5 sg:pub.10.1007/bf02669225
6 sg:pub.10.1007/s11661-003-0246-2
7 sg:pub.10.1007/s11664-014-3299-7
8 sg:pub.10.1038/35098012
9 sg:pub.10.1038/nmat1807
10 schema:datePublished 2017-01-18
11 schema:datePublishedReg 2017-01-18
12 schema:description The augmented thermoelectric performance of nanocrystalline antimony telluride (Sb2Te3) films is investigated by introducing interfacial energy-barrier scattering (i.e., barrier heights), which occurs at both the grain boundaries and the interfaces with embedded second phases. It is postulated that the barriers created at both the interfaces and boundaries filter the low-energy carriers, thus favoring a high Seebeck coefficient. A facile, but high-precision composition-controlled electrodeposition technique is employed to synthesize single-phase nanocrystalline Sb2Te3 and nanocomposite Te/Sb2Te3. Both the initial composition of the Sb-Te solid solution and the post-annealing profiles are varied to control the grain size, as well as the formation of second-phase Te. The electrical and thermoelectric properties are measured and correlated with the physical properties, where an enhanced Seebeck coefficient at a fixed carrier concentration is interpreted as indicating that the energy-dependent carrier filtering effect is in force. On a promising note, modification of the Sb2Te3 film physical properties and formation of the second phase affect the interfacial energy-barrier scattering and yields an enhanced power factor. Thus, Sb2Te3 film is a promising p-type thermoelectric material for a room-temperature-operational micro-thermoelectric power generator.
13 schema:genre article
14 schema:isAccessibleForFree false
15 schema:isPartOf Nd99d950898e742ecb499e8064d5a55c3
16 Nf6fa7391de714fd29e4a12d5b8380b93
17 sg:journal.1136213
18 schema:keywords Sb2Te3
19 Sb2Te3 films
20 Seebeck coefficient
21 Te
22 antimony telluride
23 antimony telluride films
24 barriers
25 boundaries
26 carrier concentration
27 carrier filtering effect
28 carriers
29 coefficient
30 composition
31 concentration
32 control
33 effect
34 electrodeposition technique
35 enhanced Seebeck coefficient
36 enhanced power factor
37 facile
38 facile control
39 factors
40 film physical properties
41 films
42 filtering effect
43 force
44 formation
45 generator
46 grain boundaries
47 grain size
48 high Seebeck coefficient
49 initial composition
50 interface
51 low-energy carriers
52 materials
53 modification
54 note
55 p-type thermoelectric material
56 performance
57 phase
58 physical properties
59 power factor
60 power generator
61 profile
62 promising note
63 promising p-type thermoelectric material
64 properties
65 scattering
66 second phase
67 size
68 solid solution
69 solution
70 technique
71 telluride
72 telluride films
73 thermoelectric materials
74 thermoelectric performance
75 thermoelectric properties
76 schema:name Facile Control of Interfacial Energy-Barrier Scattering in Antimony Telluride Electrodeposits
77 schema:pagination 2347-2355
78 schema:productId N5628a5ea3c9646189d1d5e637a97bdb3
79 N9566ccfa8ff44e38b5184a0a17a2f5ae
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007052192
81 https://doi.org/10.1007/s11664-016-5275-x
82 schema:sdDatePublished 2022-12-01T06:35
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher Nf10fac468caa4933adc8afcc739ea671
85 schema:url https://doi.org/10.1007/s11664-016-5275-x
86 sgo:license sg:explorer/license/
87 sgo:sdDataset articles
88 rdf:type schema:ScholarlyArticle
89 N0ac21482505c4c679fa8fd68f1c8bcac rdf:first sg:person.014541377206.66
90 rdf:rest N3969edc5f3c44a68a79b4d2e1a4527be
91 N3969edc5f3c44a68a79b4d2e1a4527be rdf:first sg:person.01315074140.07
92 rdf:rest N5c7320e4d3884ec49e8eaf50e3d37617
93 N5628a5ea3c9646189d1d5e637a97bdb3 schema:name dimensions_id
94 schema:value pub.1007052192
95 rdf:type schema:PropertyValue
96 N5c7320e4d3884ec49e8eaf50e3d37617 rdf:first sg:person.01313214270.83
97 rdf:rest N8ea1444a8a6c40158a000cfe34479402
98 N8ea1444a8a6c40158a000cfe34479402 rdf:first sg:person.0605270321.85
99 rdf:rest rdf:nil
100 N9566ccfa8ff44e38b5184a0a17a2f5ae schema:name doi
101 schema:value 10.1007/s11664-016-5275-x
102 rdf:type schema:PropertyValue
103 Nd99d950898e742ecb499e8064d5a55c3 schema:issueNumber 4
104 rdf:type schema:PublicationIssue
105 Nf10fac468caa4933adc8afcc739ea671 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 Nf6fa7391de714fd29e4a12d5b8380b93 schema:volumeNumber 46
108 rdf:type schema:PublicationVolume
109 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
110 schema:name Engineering
111 rdf:type schema:DefinedTerm
112 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
113 schema:name Materials Engineering
114 rdf:type schema:DefinedTerm
115 sg:journal.1136213 schema:issn 0361-5235
116 1543-186X
117 schema:name Journal of Electronic Materials
118 schema:publisher Springer Nature
119 rdf:type schema:Periodical
120 sg:person.01313214270.83 schema:affiliation grid-institutes:grid.410902.e
121 schema:familyName Lim
122 schema:givenName Jae-Hong
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01313214270.83
124 rdf:type schema:Person
125 sg:person.01315074140.07 schema:affiliation grid-institutes:grid.410900.c
126 schema:familyName Jung
127 schema:givenName Hyunsung
128 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01315074140.07
129 rdf:type schema:Person
130 sg:person.014541377206.66 schema:affiliation grid-institutes:grid.410902.e
131 schema:familyName Kim
132 schema:givenName Jiwon
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014541377206.66
134 rdf:type schema:Person
135 sg:person.0605270321.85 schema:affiliation grid-institutes:grid.266097.c
136 schema:familyName Myung
137 schema:givenName Nosang V.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0605270321.85
139 rdf:type schema:Person
140 sg:pub.10.1007/b71138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1108494810
141 https://doi.org/10.1007/b71138
142 rdf:type schema:CreativeWork
143 sg:pub.10.1007/bf02669225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050698789
144 https://doi.org/10.1007/bf02669225
145 rdf:type schema:CreativeWork
146 sg:pub.10.1007/s11661-003-0246-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017409410
147 https://doi.org/10.1007/s11661-003-0246-2
148 rdf:type schema:CreativeWork
149 sg:pub.10.1007/s11664-014-3299-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037917502
150 https://doi.org/10.1007/s11664-014-3299-7
151 rdf:type schema:CreativeWork
152 sg:pub.10.1038/35098012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014934672
153 https://doi.org/10.1038/35098012
154 rdf:type schema:CreativeWork
155 sg:pub.10.1038/nmat1807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045601129
156 https://doi.org/10.1038/nmat1807
157 rdf:type schema:CreativeWork
158 grid-institutes:grid.266097.c schema:alternateName Department of Chemical and Environmental Engineering and Winston Chung Global Energy Center, University of California-Riverside, 92521, Riverside, CA, USA
159 schema:name Department of Chemical and Environmental Engineering and Winston Chung Global Energy Center, University of California-Riverside, 92521, Riverside, CA, USA
160 rdf:type schema:Organization
161 grid-institutes:grid.410900.c schema:alternateName Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology, 660-031, Jinju, Korea
162 schema:name Electronic Convergence Materials Division, Korea Institute of Ceramic Engineering and Technology, 660-031, Jinju, Korea
163 rdf:type schema:Organization
164 grid-institutes:grid.410902.e schema:alternateName Electrochemistry Department, Korea Institute of Materials Science, 641-831, Changwon, Korea
165 schema:name Electrochemistry Department, Korea Institute of Materials Science, 641-831, Changwon, Korea
166 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...