Active Graphene-Based Terahertz Dual-Band Modulator Implemented in the Presence of External Fields View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-01-05

AUTHORS

Xiang Hu, Qiuping Huang, Yi Zhao, Honglei Cai, Yalin Lu

ABSTRACT

In this work, we numerically demonstrate a dynamic graphene-based dual-band metamaterial modulator (gDMM) in the presence of an external magnetic field and gate electric field. With the objective of modulating terahertz waves at two separate channels, we utilize the proposed dual-field control method to dynamically modulate the optical conductivity of graphene, and thus the working frequencies of the gDMM. An interpretation for such dependence on the external fields is presented based on a quantum understanding of the energy structure of graphene, and a numerical method based on the finite element method (FEM) is employed to investigate the optical responses of our proposed gDMM. Our results show that, by varying the strength of external fields, one can switch the operation status of the two working channels located at 3.18 THz and 9.04 THz, with modulation depths exceeding 84.4%. Only 30 meV of energy is required for shifting the Fermi level to accomplish the switch, which is extremely low compared with methods in previous works using gate electric control alone. Simultaneous ON/OFF statuses are also realized. Such great tunability and controllability of our proposed gDMM over a wide frequency range may give rise to a new class of dynamic devices for terahertz and microwave applications. More... »

PAGES

3831-3836

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-016-5234-6

DOI

http://dx.doi.org/10.1007/s11664-016-5234-6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008819060


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Advanced Applied Research Center, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Advanced Applied Research Center, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Xiang", 
        "id": "sg:person.01333443361.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333443361.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advanced Applied Research Center, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Advanced Applied Research Center, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Huang", 
        "givenName": "Qiuping", 
        "id": "sg:person.01251162234.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251162234.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advanced Applied Research Center, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Advanced Applied Research Center, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhao", 
        "givenName": "Yi", 
        "id": "sg:person.01265330161.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265330161.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Advanced Applied Research Center, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
          "id": "http://www.grid.ac/institutes/grid.59053.3a", 
          "name": [
            "Advanced Applied Research Center, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cai", 
        "givenName": "Honglei", 
        "id": "sg:person.0756670565.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756670565.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Laser and Optics Research Center, United States Air Force Academy, 80840, Colorado Springs, CO, USA", 
          "id": "http://www.grid.ac/institutes/grid.265457.7", 
          "name": [
            "Advanced Applied Research Center, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China", 
            "Department of Physics, Laser and Optics Research Center, United States Air Force Academy, 80840, Colorado Springs, CO, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Lu", 
        "givenName": "Yalin", 
        "id": "sg:person.0667355153.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667355153.29"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/35570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037112953", 
          "https://doi.org/10.1038/35570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000214999", 
          "https://doi.org/10.1038/nature05343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3433", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010197142", 
          "https://doi.org/10.1038/nmat3433"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms8082", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047827780", 
          "https://doi.org/10.1038/ncomms8082"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep01170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052839459", 
          "https://doi.org/10.1038/srep01170"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms1787", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041148459", 
          "https://doi.org/10.1038/ncomms1787"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature05023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012273606", 
          "https://doi.org/10.1038/nature05023"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphoton.2007.3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010034031", 
          "https://doi.org/10.1038/nphoton.2007.3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep07409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052985588", 
          "https://doi.org/10.1038/srep07409"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046931419", 
          "https://doi.org/10.1038/nmat708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2008.67", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024324186", 
          "https://doi.org/10.1038/nnano.2008.67"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-01-05", 
    "datePublishedReg": "2017-01-05", 
    "description": "In this work, we numerically demonstrate a dynamic graphene-based dual-band metamaterial modulator (gDMM) in the presence of an external magnetic field and gate electric field. With the objective of modulating terahertz waves at two separate channels, we utilize the proposed dual-field control method to dynamically modulate the optical conductivity of graphene, and thus the working frequencies of the gDMM. An interpretation for such dependence on the external fields is presented based on a quantum understanding of the energy structure of graphene, and a numerical method based on the finite element method (FEM) is employed to investigate the optical responses of our proposed gDMM. Our results show that, by varying the strength of external fields, one can switch the operation status of the two working channels located at 3.18 THz and 9.04\u00a0THz, with modulation depths exceeding 84.4%. Only 30\u00a0meV of energy is required for shifting the Fermi level to accomplish the switch, which is extremely low compared with methods in previous works using gate electric control alone. Simultaneous ON/OFF statuses are also realized. Such great tunability and controllability of our proposed gDMM over a wide frequency range may give rise to a new class of dynamic devices for terahertz and microwave applications.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11664-016-5234-6", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "keywords": [
      "external field", 
      "finite element method", 
      "MeV of energy", 
      "external magnetic field", 
      "gate electric field", 
      "optical conductivity", 
      "optical response", 
      "terahertz waves", 
      "quantum understanding", 
      "active graphene", 
      "microwave applications", 
      "modulation depth", 
      "electric control", 
      "Fermi level", 
      "magnetic field", 
      "electric field", 
      "great tunability", 
      "graphene", 
      "wide frequency range", 
      "THz", 
      "OFF status", 
      "dynamic devices", 
      "element method", 
      "separate channels", 
      "frequency range", 
      "energy structure", 
      "control method", 
      "operation status", 
      "numerical method", 
      "field", 
      "such dependence", 
      "terahertz", 
      "MeV", 
      "tunability", 
      "channels", 
      "new class", 
      "modulator", 
      "devices", 
      "waves", 
      "energy", 
      "dependence", 
      "conductivity", 
      "applications", 
      "method", 
      "switch", 
      "strength", 
      "controllability", 
      "previous work", 
      "work", 
      "structure", 
      "frequency", 
      "range", 
      "depth", 
      "presence", 
      "results", 
      "interpretation", 
      "control", 
      "objective", 
      "understanding", 
      "response", 
      "class", 
      "levels", 
      "status"
    ], 
    "name": "Active Graphene-Based Terahertz Dual-Band Modulator Implemented in the Presence of External Fields", 
    "pagination": "3831-3836", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008819060"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-016-5234-6"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-016-5234-6", 
      "https://app.dimensions.ai/details/publication/pub.1008819060"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-12-01T06:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/article/article_731.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11664-016-5234-6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5234-6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5234-6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5234-6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5234-6'


 

This table displays all metadata directly associated to this object as RDF triples.

204 TRIPLES      21 PREDICATES      100 URIs      79 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-016-5234-6 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 anzsrc-for:09
4 anzsrc-for:0912
5 schema:author N09f9d526fc154af98f80c107c5bfa0eb
6 schema:citation sg:pub.10.1038/35570
7 sg:pub.10.1038/nature05023
8 sg:pub.10.1038/nature05343
9 sg:pub.10.1038/ncomms1787
10 sg:pub.10.1038/ncomms8082
11 sg:pub.10.1038/nmat3433
12 sg:pub.10.1038/nmat708
13 sg:pub.10.1038/nnano.2008.67
14 sg:pub.10.1038/nphoton.2007.3
15 sg:pub.10.1038/srep01170
16 sg:pub.10.1038/srep07409
17 schema:datePublished 2017-01-05
18 schema:datePublishedReg 2017-01-05
19 schema:description In this work, we numerically demonstrate a dynamic graphene-based dual-band metamaterial modulator (gDMM) in the presence of an external magnetic field and gate electric field. With the objective of modulating terahertz waves at two separate channels, we utilize the proposed dual-field control method to dynamically modulate the optical conductivity of graphene, and thus the working frequencies of the gDMM. An interpretation for such dependence on the external fields is presented based on a quantum understanding of the energy structure of graphene, and a numerical method based on the finite element method (FEM) is employed to investigate the optical responses of our proposed gDMM. Our results show that, by varying the strength of external fields, one can switch the operation status of the two working channels located at 3.18 THz and 9.04 THz, with modulation depths exceeding 84.4%. Only 30 meV of energy is required for shifting the Fermi level to accomplish the switch, which is extremely low compared with methods in previous works using gate electric control alone. Simultaneous ON/OFF statuses are also realized. Such great tunability and controllability of our proposed gDMM over a wide frequency range may give rise to a new class of dynamic devices for terahertz and microwave applications.
20 schema:genre article
21 schema:isAccessibleForFree false
22 schema:isPartOf N148a9ab7866e49069d714980f098739e
23 N4ba0ae2adcbc4bc8af14e78c916be9a5
24 sg:journal.1136213
25 schema:keywords Fermi level
26 MeV
27 MeV of energy
28 OFF status
29 THz
30 active graphene
31 applications
32 channels
33 class
34 conductivity
35 control
36 control method
37 controllability
38 dependence
39 depth
40 devices
41 dynamic devices
42 electric control
43 electric field
44 element method
45 energy
46 energy structure
47 external field
48 external magnetic field
49 field
50 finite element method
51 frequency
52 frequency range
53 gate electric field
54 graphene
55 great tunability
56 interpretation
57 levels
58 magnetic field
59 method
60 microwave applications
61 modulation depth
62 modulator
63 new class
64 numerical method
65 objective
66 operation status
67 optical conductivity
68 optical response
69 presence
70 previous work
71 quantum understanding
72 range
73 response
74 results
75 separate channels
76 status
77 strength
78 structure
79 such dependence
80 switch
81 terahertz
82 terahertz waves
83 tunability
84 understanding
85 waves
86 wide frequency range
87 work
88 schema:name Active Graphene-Based Terahertz Dual-Band Modulator Implemented in the Presence of External Fields
89 schema:pagination 3831-3836
90 schema:productId N16bb3d6511f24bfbb8c6cc53e9d7099e
91 Nc91dd949303e4e0e8edcdbb96cabce4e
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008819060
93 https://doi.org/10.1007/s11664-016-5234-6
94 schema:sdDatePublished 2022-12-01T06:35
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N5edef7f769e94367a916b0489adf6ff9
97 schema:url https://doi.org/10.1007/s11664-016-5234-6
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N0405ae4dd0dc45e7a06a7ed3f6eb0d80 rdf:first sg:person.0756670565.63
102 rdf:rest N57b7eeb9551a4c358f1457f06b3eca20
103 N09f9d526fc154af98f80c107c5bfa0eb rdf:first sg:person.01333443361.24
104 rdf:rest N4461ec8b1d7b47478b03725c3831d1ad
105 N148a9ab7866e49069d714980f098739e schema:issueNumber 7
106 rdf:type schema:PublicationIssue
107 N16bb3d6511f24bfbb8c6cc53e9d7099e schema:name doi
108 schema:value 10.1007/s11664-016-5234-6
109 rdf:type schema:PropertyValue
110 N3815a243a57c4c6d9ed8f3b91770fc76 rdf:first sg:person.01265330161.07
111 rdf:rest N0405ae4dd0dc45e7a06a7ed3f6eb0d80
112 N4461ec8b1d7b47478b03725c3831d1ad rdf:first sg:person.01251162234.18
113 rdf:rest N3815a243a57c4c6d9ed8f3b91770fc76
114 N4ba0ae2adcbc4bc8af14e78c916be9a5 schema:volumeNumber 46
115 rdf:type schema:PublicationVolume
116 N57b7eeb9551a4c358f1457f06b3eca20 rdf:first sg:person.0667355153.29
117 rdf:rest rdf:nil
118 N5edef7f769e94367a916b0489adf6ff9 schema:name Springer Nature - SN SciGraph project
119 rdf:type schema:Organization
120 Nc91dd949303e4e0e8edcdbb96cabce4e schema:name dimensions_id
121 schema:value pub.1008819060
122 rdf:type schema:PropertyValue
123 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
124 schema:name Physical Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
127 schema:name Other Physical Sciences
128 rdf:type schema:DefinedTerm
129 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
130 schema:name Engineering
131 rdf:type schema:DefinedTerm
132 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
133 schema:name Materials Engineering
134 rdf:type schema:DefinedTerm
135 sg:journal.1136213 schema:issn 0361-5235
136 1543-186X
137 schema:name Journal of Electronic Materials
138 schema:publisher Springer Nature
139 rdf:type schema:Periodical
140 sg:person.01251162234.18 schema:affiliation grid-institutes:grid.59053.3a
141 schema:familyName Huang
142 schema:givenName Qiuping
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01251162234.18
144 rdf:type schema:Person
145 sg:person.01265330161.07 schema:affiliation grid-institutes:grid.59053.3a
146 schema:familyName Zhao
147 schema:givenName Yi
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265330161.07
149 rdf:type schema:Person
150 sg:person.01333443361.24 schema:affiliation grid-institutes:grid.59053.3a
151 schema:familyName Hu
152 schema:givenName Xiang
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01333443361.24
154 rdf:type schema:Person
155 sg:person.0667355153.29 schema:affiliation grid-institutes:grid.265457.7
156 schema:familyName Lu
157 schema:givenName Yalin
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0667355153.29
159 rdf:type schema:Person
160 sg:person.0756670565.63 schema:affiliation grid-institutes:grid.59053.3a
161 schema:familyName Cai
162 schema:givenName Honglei
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0756670565.63
164 rdf:type schema:Person
165 sg:pub.10.1038/35570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037112953
166 https://doi.org/10.1038/35570
167 rdf:type schema:CreativeWork
168 sg:pub.10.1038/nature05023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012273606
169 https://doi.org/10.1038/nature05023
170 rdf:type schema:CreativeWork
171 sg:pub.10.1038/nature05343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000214999
172 https://doi.org/10.1038/nature05343
173 rdf:type schema:CreativeWork
174 sg:pub.10.1038/ncomms1787 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041148459
175 https://doi.org/10.1038/ncomms1787
176 rdf:type schema:CreativeWork
177 sg:pub.10.1038/ncomms8082 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047827780
178 https://doi.org/10.1038/ncomms8082
179 rdf:type schema:CreativeWork
180 sg:pub.10.1038/nmat3433 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010197142
181 https://doi.org/10.1038/nmat3433
182 rdf:type schema:CreativeWork
183 sg:pub.10.1038/nmat708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046931419
184 https://doi.org/10.1038/nmat708
185 rdf:type schema:CreativeWork
186 sg:pub.10.1038/nnano.2008.67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024324186
187 https://doi.org/10.1038/nnano.2008.67
188 rdf:type schema:CreativeWork
189 sg:pub.10.1038/nphoton.2007.3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010034031
190 https://doi.org/10.1038/nphoton.2007.3
191 rdf:type schema:CreativeWork
192 sg:pub.10.1038/srep01170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052839459
193 https://doi.org/10.1038/srep01170
194 rdf:type schema:CreativeWork
195 sg:pub.10.1038/srep07409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052985588
196 https://doi.org/10.1038/srep07409
197 rdf:type schema:CreativeWork
198 grid-institutes:grid.265457.7 schema:alternateName Department of Physics, Laser and Optics Research Center, United States Air Force Academy, 80840, Colorado Springs, CO, USA
199 schema:name Advanced Applied Research Center, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China
200 Department of Physics, Laser and Optics Research Center, United States Air Force Academy, 80840, Colorado Springs, CO, USA
201 rdf:type schema:Organization
202 grid-institutes:grid.59053.3a schema:alternateName Advanced Applied Research Center, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China
203 schema:name Advanced Applied Research Center, Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China
204 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...