AlGaN Nanostructures with Extremely High Room-Temperature Internal Quantum Efficiency of Emission Below 300 nm View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-11-08

AUTHORS

A. A. Toropov, E. A. Shevchenko, T. V. Shubina, V. N. Jmerik, D. V. Nechaev, E. A. Evropeytsev, V. Kh. Kaibyshev, G. Pozina, S. Rouvimov, S. V. Ivanov

ABSTRACT

We present theoretical optimization of the design of a quantum well (QW) heterostructure based on AlGaN alloys, aimed at achievement of the maximum possible internal quantum efficiency of emission in the mid-ultraviolet spectral range below 300 nm at room temperature. A sample with optimized parameters was fabricated by plasma-assisted molecular beam epitaxy using the submonolayer digital alloying technique for QW formation. High-angle annular dark-field scanning transmission electron microscopy confirmed strong compositional disordering of the thus-fabricated QW, which presumably facilitates lateral localization of charge carriers in the QW plane. Stress evolution in the heterostructure was monitored in real time during growth using a multibeam optical stress sensor intended for measurements of substrate curvature. Time-resolved photoluminescence spectroscopy confirmed that radiative recombination in the fabricated sample dominated in the whole temperature range up to 300 K. This leads to record weak temperature-induced quenching of the QW emission intensity, which at 300 K does not exceed 20% of the low-temperature value. More... »

PAGES

3888-3893

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-016-5091-3

DOI

http://dx.doi.org/10.1007/s11664-016-5091-3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020280523


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toropov", 
        "givenName": "A. A.", 
        "id": "sg:person.07445433153.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07445433153.10"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shevchenko", 
        "givenName": "E. A.", 
        "id": "sg:person.011332217145.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011332217145.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shubina", 
        "givenName": "T. V.", 
        "id": "sg:person.010524222613.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010524222613.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jmerik", 
        "givenName": "V. N.", 
        "id": "sg:person.010773242043.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010773242043.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nechaev", 
        "givenName": "D. V.", 
        "id": "sg:person.012053211625.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053211625.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Evropeytsev", 
        "givenName": "E. A.", 
        "id": "sg:person.013203266151.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013203266151.03"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kaibyshev", 
        "givenName": "V. Kh.", 
        "id": "sg:person.013446152625.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446152625.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Chemistry and Biology, Link\u00f6ping University, 581 83, Link\u00f6ping, Sweden", 
          "id": "http://www.grid.ac/institutes/grid.5640.7", 
          "name": [
            "Department of Physics, Chemistry and Biology, Link\u00f6ping University, 581 83, Link\u00f6ping, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pozina", 
        "givenName": "G.", 
        "id": "sg:person.01230642714.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230642714.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Notre Dame, 46556, Notre Dame, IN, USA", 
          "id": "http://www.grid.ac/institutes/grid.131063.6", 
          "name": [
            "University of Notre Dame, 46556, Notre Dame, IN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rouvimov", 
        "givenName": "S.", 
        "id": "sg:person.01321212003.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321212003.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanov", 
        "givenName": "S. V.", 
        "id": "sg:person.01064304443.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064304443.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/jmr.2015.220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017435460", 
          "https://doi.org/10.1557/jmr.2015.220"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-319-24100-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030028787", 
          "https://doi.org/10.1007/978-3-319-24100-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1726", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042638955", 
          "https://doi.org/10.1038/nmat1726"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-11-08", 
    "datePublishedReg": "2016-11-08", 
    "description": "We present theoretical optimization of the design of a quantum well (QW) heterostructure based on AlGaN alloys, aimed at achievement of the maximum possible internal quantum efficiency of emission in the mid-ultraviolet spectral range below 300\u00a0nm at room temperature. A sample with optimized parameters was fabricated by plasma-assisted molecular beam epitaxy using the submonolayer digital alloying technique for QW formation. High-angle annular dark-field scanning transmission electron microscopy confirmed strong compositional disordering of the thus-fabricated QW, which presumably facilitates lateral localization of charge carriers in the QW plane. Stress evolution in the heterostructure was monitored in real time during growth using a multibeam optical stress sensor intended for measurements of substrate curvature. Time-resolved photoluminescence spectroscopy confirmed that radiative recombination in the fabricated sample dominated in the whole temperature range up to 300\u00a0K. This leads to record weak temperature-induced quenching of the QW emission intensity, which at 300\u00a0K does not exceed 20% of the low-temperature value.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11664-016-5091-3", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.6751279", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "keywords": [
      "internal quantum efficiency", 
      "quantum efficiency", 
      "annular dark-field scanning transmission electron microscopy", 
      "dark-field scanning transmission electron microscopy", 
      "plasma-assisted molecular beam epitaxy", 
      "high-angle annular dark-field scanning transmission electron microscopy", 
      "time-resolved photoluminescence spectroscopy", 
      "scanning transmission electron microscopy", 
      "quantum well heterostructure", 
      "molecular beam epitaxy", 
      "QW plane", 
      "well heterostructures", 
      "transmission electron microscopy", 
      "QW formation", 
      "beam epitaxy", 
      "photoluminescence spectroscopy", 
      "compositional disordering", 
      "spectral range", 
      "radiative recombination", 
      "AlGaN alloys", 
      "charge carriers", 
      "low-temperature value", 
      "emission intensity", 
      "lateral localization", 
      "heterostructures", 
      "electron microscopy", 
      "room temperature", 
      "emission", 
      "theoretical optimization", 
      "substrate curvature", 
      "QW", 
      "whole temperature", 
      "epitaxy", 
      "nanostructures", 
      "spectroscopy", 
      "microscopy", 
      "real time", 
      "optimized parameters", 
      "disordering", 
      "quenching", 
      "alloying technique", 
      "temperature", 
      "stress evolution", 
      "measurements", 
      "recombination", 
      "intensity", 
      "plane", 
      "carriers", 
      "efficiency", 
      "evolution", 
      "range", 
      "sensors", 
      "alloy", 
      "formation", 
      "curvature", 
      "samples", 
      "technique", 
      "stress sensor", 
      "parameters", 
      "values", 
      "time", 
      "localization", 
      "growth", 
      "design", 
      "achievement", 
      "optimization", 
      "maximum possible internal quantum efficiency", 
      "possible internal quantum efficiency", 
      "mid-ultraviolet spectral range", 
      "submonolayer digital alloying technique", 
      "digital alloying technique", 
      "strong compositional disordering", 
      "multibeam optical stress sensor", 
      "optical stress sensor", 
      "weak temperature-induced quenching", 
      "temperature-induced quenching", 
      "QW emission intensity", 
      "High Room-Temperature Internal Quantum Efficiency", 
      "Room-Temperature Internal Quantum Efficiency"
    ], 
    "name": "AlGaN Nanostructures with Extremely High Room-Temperature Internal Quantum Efficiency of Emission Below 300 nm", 
    "pagination": "3888-3893", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020280523"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-016-5091-3"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-016-5091-3", 
      "https://app.dimensions.ai/details/publication/pub.1020280523"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-12-01T19:38", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/article/article_714.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11664-016-5091-3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5091-3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5091-3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5091-3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5091-3'


 

This table displays all metadata directly associated to this object as RDF triples.

220 TRIPLES      22 PREDICATES      107 URIs      96 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-016-5091-3 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author Nb11a417112b443c693f6a1a545cefc59
4 schema:citation sg:pub.10.1007/978-3-319-24100-5
5 sg:pub.10.1038/nmat1726
6 sg:pub.10.1557/jmr.2015.220
7 schema:datePublished 2016-11-08
8 schema:datePublishedReg 2016-11-08
9 schema:description We present theoretical optimization of the design of a quantum well (QW) heterostructure based on AlGaN alloys, aimed at achievement of the maximum possible internal quantum efficiency of emission in the mid-ultraviolet spectral range below 300 nm at room temperature. A sample with optimized parameters was fabricated by plasma-assisted molecular beam epitaxy using the submonolayer digital alloying technique for QW formation. High-angle annular dark-field scanning transmission electron microscopy confirmed strong compositional disordering of the thus-fabricated QW, which presumably facilitates lateral localization of charge carriers in the QW plane. Stress evolution in the heterostructure was monitored in real time during growth using a multibeam optical stress sensor intended for measurements of substrate curvature. Time-resolved photoluminescence spectroscopy confirmed that radiative recombination in the fabricated sample dominated in the whole temperature range up to 300 K. This leads to record weak temperature-induced quenching of the QW emission intensity, which at 300 K does not exceed 20% of the low-temperature value.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N0db7be1df5094799b825dba6d5cd11e5
14 N8f6631fa35be4df18438b85a4c167452
15 sg:journal.1136213
16 schema:keywords AlGaN alloys
17 High Room-Temperature Internal Quantum Efficiency
18 QW
19 QW emission intensity
20 QW formation
21 QW plane
22 Room-Temperature Internal Quantum Efficiency
23 achievement
24 alloy
25 alloying technique
26 annular dark-field scanning transmission electron microscopy
27 beam epitaxy
28 carriers
29 charge carriers
30 compositional disordering
31 curvature
32 dark-field scanning transmission electron microscopy
33 design
34 digital alloying technique
35 disordering
36 efficiency
37 electron microscopy
38 emission
39 emission intensity
40 epitaxy
41 evolution
42 formation
43 growth
44 heterostructures
45 high-angle annular dark-field scanning transmission electron microscopy
46 intensity
47 internal quantum efficiency
48 lateral localization
49 localization
50 low-temperature value
51 maximum possible internal quantum efficiency
52 measurements
53 microscopy
54 mid-ultraviolet spectral range
55 molecular beam epitaxy
56 multibeam optical stress sensor
57 nanostructures
58 optical stress sensor
59 optimization
60 optimized parameters
61 parameters
62 photoluminescence spectroscopy
63 plane
64 plasma-assisted molecular beam epitaxy
65 possible internal quantum efficiency
66 quantum efficiency
67 quantum well heterostructure
68 quenching
69 radiative recombination
70 range
71 real time
72 recombination
73 room temperature
74 samples
75 scanning transmission electron microscopy
76 sensors
77 spectral range
78 spectroscopy
79 stress evolution
80 stress sensor
81 strong compositional disordering
82 submonolayer digital alloying technique
83 substrate curvature
84 technique
85 temperature
86 temperature-induced quenching
87 theoretical optimization
88 time
89 time-resolved photoluminescence spectroscopy
90 transmission electron microscopy
91 values
92 weak temperature-induced quenching
93 well heterostructures
94 whole temperature
95 schema:name AlGaN Nanostructures with Extremely High Room-Temperature Internal Quantum Efficiency of Emission Below 300 nm
96 schema:pagination 3888-3893
97 schema:productId N2b0a1508513c4fffb0a46d42ec99609a
98 N3e828111de1c43da8fe9b1ebd41c88c2
99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020280523
100 https://doi.org/10.1007/s11664-016-5091-3
101 schema:sdDatePublished 2021-12-01T19:38
102 schema:sdLicense https://scigraph.springernature.com/explorer/license/
103 schema:sdPublisher N1e7bfe51193c44f9abc3d4661368ca20
104 schema:url https://doi.org/10.1007/s11664-016-5091-3
105 sgo:license sg:explorer/license/
106 sgo:sdDataset articles
107 rdf:type schema:ScholarlyArticle
108 N0db7be1df5094799b825dba6d5cd11e5 schema:volumeNumber 46
109 rdf:type schema:PublicationVolume
110 N143a60bc9b8e4c2cbfa42d0307d864a0 rdf:first sg:person.010524222613.44
111 rdf:rest Nc3a8f122a0b044c7bc083a72266d59fd
112 N1e7bfe51193c44f9abc3d4661368ca20 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N2b0a1508513c4fffb0a46d42ec99609a schema:name doi
115 schema:value 10.1007/s11664-016-5091-3
116 rdf:type schema:PropertyValue
117 N3e828111de1c43da8fe9b1ebd41c88c2 schema:name dimensions_id
118 schema:value pub.1020280523
119 rdf:type schema:PropertyValue
120 N4d5a999acd1546ef9d794d1cb699b576 rdf:first sg:person.01230642714.20
121 rdf:rest Ndfc0954e25be47499142886f0242fc26
122 N72f256becb0c431aa44d8ca381bd15da rdf:first sg:person.011332217145.87
123 rdf:rest N143a60bc9b8e4c2cbfa42d0307d864a0
124 N7852686a9598473482b7d7b54f1dd1cd rdf:first sg:person.01064304443.31
125 rdf:rest rdf:nil
126 N79bd4178111c4dffab22b0f4e3f4eb6e rdf:first sg:person.013203266151.03
127 rdf:rest N9fed6b4b34d241d89e646ae4e60862bb
128 N8f6631fa35be4df18438b85a4c167452 schema:issueNumber 7
129 rdf:type schema:PublicationIssue
130 N9fed6b4b34d241d89e646ae4e60862bb rdf:first sg:person.013446152625.16
131 rdf:rest N4d5a999acd1546ef9d794d1cb699b576
132 Na27105c3af4847b08603986be4a8bd20 rdf:first sg:person.012053211625.45
133 rdf:rest N79bd4178111c4dffab22b0f4e3f4eb6e
134 Nb11a417112b443c693f6a1a545cefc59 rdf:first sg:person.07445433153.10
135 rdf:rest N72f256becb0c431aa44d8ca381bd15da
136 Nc3a8f122a0b044c7bc083a72266d59fd rdf:first sg:person.010773242043.36
137 rdf:rest Na27105c3af4847b08603986be4a8bd20
138 Ndfc0954e25be47499142886f0242fc26 rdf:first sg:person.01321212003.20
139 rdf:rest N7852686a9598473482b7d7b54f1dd1cd
140 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
141 schema:name Engineering
142 rdf:type schema:DefinedTerm
143 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
144 schema:name Materials Engineering
145 rdf:type schema:DefinedTerm
146 sg:grant.6751279 http://pending.schema.org/fundedItem sg:pub.10.1007/s11664-016-5091-3
147 rdf:type schema:MonetaryGrant
148 sg:journal.1136213 schema:issn 0361-5235
149 1543-186X
150 schema:name Journal of Electronic Materials
151 schema:publisher Springer Nature
152 rdf:type schema:Periodical
153 sg:person.010524222613.44 schema:affiliation grid-institutes:grid.423485.c
154 schema:familyName Shubina
155 schema:givenName T. V.
156 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010524222613.44
157 rdf:type schema:Person
158 sg:person.01064304443.31 schema:affiliation grid-institutes:grid.423485.c
159 schema:familyName Ivanov
160 schema:givenName S. V.
161 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064304443.31
162 rdf:type schema:Person
163 sg:person.010773242043.36 schema:affiliation grid-institutes:grid.423485.c
164 schema:familyName Jmerik
165 schema:givenName V. N.
166 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010773242043.36
167 rdf:type schema:Person
168 sg:person.011332217145.87 schema:affiliation grid-institutes:grid.423485.c
169 schema:familyName Shevchenko
170 schema:givenName E. A.
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011332217145.87
172 rdf:type schema:Person
173 sg:person.012053211625.45 schema:affiliation grid-institutes:grid.423485.c
174 schema:familyName Nechaev
175 schema:givenName D. V.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012053211625.45
177 rdf:type schema:Person
178 sg:person.01230642714.20 schema:affiliation grid-institutes:grid.5640.7
179 schema:familyName Pozina
180 schema:givenName G.
181 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01230642714.20
182 rdf:type schema:Person
183 sg:person.013203266151.03 schema:affiliation grid-institutes:grid.423485.c
184 schema:familyName Evropeytsev
185 schema:givenName E. A.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013203266151.03
187 rdf:type schema:Person
188 sg:person.01321212003.20 schema:affiliation grid-institutes:grid.131063.6
189 schema:familyName Rouvimov
190 schema:givenName S.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01321212003.20
192 rdf:type schema:Person
193 sg:person.013446152625.16 schema:affiliation grid-institutes:grid.423485.c
194 schema:familyName Kaibyshev
195 schema:givenName V. Kh.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013446152625.16
197 rdf:type schema:Person
198 sg:person.07445433153.10 schema:affiliation grid-institutes:grid.423485.c
199 schema:familyName Toropov
200 schema:givenName A. A.
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07445433153.10
202 rdf:type schema:Person
203 sg:pub.10.1007/978-3-319-24100-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030028787
204 https://doi.org/10.1007/978-3-319-24100-5
205 rdf:type schema:CreativeWork
206 sg:pub.10.1038/nmat1726 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042638955
207 https://doi.org/10.1038/nmat1726
208 rdf:type schema:CreativeWork
209 sg:pub.10.1557/jmr.2015.220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017435460
210 https://doi.org/10.1557/jmr.2015.220
211 rdf:type schema:CreativeWork
212 grid-institutes:grid.131063.6 schema:alternateName University of Notre Dame, 46556, Notre Dame, IN, USA
213 schema:name University of Notre Dame, 46556, Notre Dame, IN, USA
214 rdf:type schema:Organization
215 grid-institutes:grid.423485.c schema:alternateName Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia
216 schema:name Ioffe Institute, Politekhnicheskaya 26, 194021, St.Petersburg, Russia
217 rdf:type schema:Organization
218 grid-institutes:grid.5640.7 schema:alternateName Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
219 schema:name Department of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden
220 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...