Substrate Effects on Growth of MoS2 Film by Laser Physical Vapor Deposition on Sapphire, Si and Graphene (on Cu) View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02

AUTHORS

K. Jagannadham, J. Cui, Y. Zhu

ABSTRACT

Molybdenum disulfide (MoS2) films were deposited on sapphire (0001), Si (001) and graphene on Cu by laser physical vapor deposition at 600°C for different time periods to achieve control of thickness. MoS2 film was found to grow on all the substrates in the (0002) orientation. Films are found to be S-deficient and a free Mo peak was observed in the x-ray diffraction. Raman spectroscopy showed the characteristic peaks of MoS2 film with decreasing separation between the A1g and E2g1 peaks for a shorter time of deposition or smaller thickness of the film. MoS2 films on sapphire substrate showed additional peaks due to MoO3 and Mo4O11 phases. Films on Si substrate and graphene on Cu contained only the characteristic peaks. MoS2 films on graphene suppressed the graphene peak as a result of large fluorescence background in the Raman spectrum. Interfacial effects and the presence of an oxygen impurity are considered responsible for the large fluorescence background in the Raman spectrum. X-ray photoelectron spectroscopy indicated substrate interaction with the films on sapphire and Si. Coverage of the film on the substrates is uniform with uniform distribution of the Mo and S as evidenced from the x-ray maps. Atomic force microscopy image revealed the surface of the film on sapphire to be very smooth. Electrical conductance measurements showed the MoS2 film on sapphire is semiconducting but with much lower activation energy compared to the bandgap. The presence of excess Mo in the film is considered responsible for the lower activation energy. More... »

PAGES

1010-1021

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-016-5060-x

DOI

http://dx.doi.org/10.1007/s11664-016-5060-x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017196436


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "North Carolina State University", 
          "id": "https://www.grid.ac/institutes/grid.40803.3f", 
          "name": [
            "Department of Materials Science and Engineering, North Carolina State University, 27695, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jagannadham", 
        "givenName": "K.", 
        "id": "sg:person.015727047567.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015727047567.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Carolina State University", 
          "id": "https://www.grid.ac/institutes/grid.40803.3f", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, North Carolina State University, 27695, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cui", 
        "givenName": "J.", 
        "id": "sg:person.011101277463.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011101277463.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "North Carolina State University", 
          "id": "https://www.grid.ac/institutes/grid.40803.3f", 
          "name": [
            "Department of Mechanical and Aerospace Engineering, North Carolina State University, 27695, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhu", 
        "givenName": "Y.", 
        "id": "sg:person.0775615751.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775615751.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/b107046k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002149336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.105.136805", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004648868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(69)90768-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008721176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(69)90768-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008721176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4852615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010112326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cej.2014.07.046", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010550426"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(90)90048-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011236226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0038-1098(90)90048-g", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011236226"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/c3ee42591f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011465566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1246501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015143253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1246501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015143253"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat3633", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016046837", 
          "https://doi.org/10.1038/nmat3633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201104798", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016282353"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl302015v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020530380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms7293", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022146120", 
          "https://doi.org/10.1038/ncomms7293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2013.100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023181230", 
          "https://doi.org/10.1038/nnano.2013.100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b107012f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025217252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.6b01636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029512762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn1003937", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030794634"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4921920", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032304924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep00682", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033536702", 
          "https://doi.org/10.1038/srep00682"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssr.201409561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034217890"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0502848102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036398807"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11249-006-9063-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039161593", 
          "https://doi.org/10.1007/s11249-006-9063-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nn502776h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040305930"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/ange.201402998", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041544336"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4894256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043354114"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/nl503251h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043385874"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.diamond.2006.03.019", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043511528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms3642", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044547875", 
          "https://doi.org/10.1038/ncomms3642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2010.279", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047704758", 
          "https://doi.org/10.1038/nnano.2010.279"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/acsnano.5b02078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048659108"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms4087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052806776", 
          "https://doi.org/10.1038/ncomms4087"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1243879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053324522"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/am503719b", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055146148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm303445s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055415199"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100393a010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055668762"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j150531a020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055693229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0111867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056046165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp0111867", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056046165"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.104276", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057651847"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.3441263", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057952385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.075414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060600456"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.075414", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060600456"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02", 
    "datePublishedReg": "2017-02-01", 
    "description": "Molybdenum disulfide (MoS2) films were deposited on sapphire (0001), Si (001) and graphene on Cu by laser physical vapor deposition at 600\u00b0C for different time periods to achieve control of thickness. MoS2 film was found to grow on all the substrates in the (0002) orientation. Films are found to be S-deficient and a free Mo peak was observed in the x-ray diffraction. Raman spectroscopy showed the characteristic peaks of MoS2 film with decreasing separation between the A1g and E2g1 peaks for a shorter time of deposition or smaller thickness of the film. MoS2 films on sapphire substrate showed additional peaks due to MoO3 and Mo4O11 phases. Films on Si substrate and graphene on Cu contained only the characteristic peaks. MoS2 films on graphene suppressed the graphene peak as a result of large fluorescence background in the Raman spectrum. Interfacial effects and the presence of an oxygen impurity are considered responsible for the large fluorescence background in the Raman spectrum. X-ray photoelectron spectroscopy indicated substrate interaction with the films on sapphire and Si. Coverage of the film on the substrates is uniform with uniform distribution of the Mo and S as evidenced from the x-ray maps. Atomic force microscopy image revealed the surface of the film on sapphire to be very smooth. Electrical conductance measurements showed the MoS2 film on sapphire is semiconducting but with much lower activation energy compared to the bandgap. The presence of excess Mo in the film is considered responsible for the lower activation energy.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11664-016-5060-x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Substrate Effects on Growth of MoS2 Film by Laser Physical Vapor Deposition on Sapphire, Si and Graphene (on Cu)", 
    "pagination": "1010-1021", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "51ee33616978bbacfc4eb958e5fbd9bc122a1ae498b52941e1f666a94bcdd2ab"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-016-5060-x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017196436"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-016-5060-x", 
      "https://app.dimensions.ai/details/publication/pub.1017196436"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87109_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11664-016-5060-x"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5060-x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5060-x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5060-x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5060-x'


 

This table displays all metadata directly associated to this object as RDF triples.

201 TRIPLES      21 PREDICATES      66 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-016-5060-x schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N7b4045f54abc480d837520d3b6e85d68
4 schema:citation sg:pub.10.1007/s11249-006-9063-2
5 sg:pub.10.1038/ncomms3642
6 sg:pub.10.1038/ncomms4087
7 sg:pub.10.1038/ncomms7293
8 sg:pub.10.1038/nmat3633
9 sg:pub.10.1038/nnano.2010.279
10 sg:pub.10.1038/nnano.2013.100
11 sg:pub.10.1038/srep00682
12 https://doi.org/10.1002/adma.201104798
13 https://doi.org/10.1002/ange.201402998
14 https://doi.org/10.1002/pssr.201409561
15 https://doi.org/10.1016/0038-1098(69)90768-6
16 https://doi.org/10.1016/0038-1098(90)90048-g
17 https://doi.org/10.1016/j.cej.2014.07.046
18 https://doi.org/10.1016/j.diamond.2006.03.019
19 https://doi.org/10.1021/acsnano.5b02078
20 https://doi.org/10.1021/acsnano.6b01636
21 https://doi.org/10.1021/am503719b
22 https://doi.org/10.1021/cm303445s
23 https://doi.org/10.1021/j100393a010
24 https://doi.org/10.1021/j150531a020
25 https://doi.org/10.1021/jp0111867
26 https://doi.org/10.1021/nl302015v
27 https://doi.org/10.1021/nl503251h
28 https://doi.org/10.1021/nn1003937
29 https://doi.org/10.1021/nn502776h
30 https://doi.org/10.1039/b107012f
31 https://doi.org/10.1039/b107046k
32 https://doi.org/10.1039/c3ee42591f
33 https://doi.org/10.1063/1.104276
34 https://doi.org/10.1063/1.3441263
35 https://doi.org/10.1063/1.4852615
36 https://doi.org/10.1063/1.4894256
37 https://doi.org/10.1063/1.4921920
38 https://doi.org/10.1073/pnas.0502848102
39 https://doi.org/10.1103/physrevb.64.075414
40 https://doi.org/10.1103/physrevlett.105.136805
41 https://doi.org/10.1126/science.1243879
42 https://doi.org/10.1126/science.1246501
43 schema:datePublished 2017-02
44 schema:datePublishedReg 2017-02-01
45 schema:description Molybdenum disulfide (MoS2) films were deposited on sapphire (0001), Si (001) and graphene on Cu by laser physical vapor deposition at 600°C for different time periods to achieve control of thickness. MoS2 film was found to grow on all the substrates in the (0002) orientation. Films are found to be S-deficient and a free Mo peak was observed in the x-ray diffraction. Raman spectroscopy showed the characteristic peaks of MoS2 film with decreasing separation between the A1g and E2g1 peaks for a shorter time of deposition or smaller thickness of the film. MoS2 films on sapphire substrate showed additional peaks due to MoO3 and Mo4O11 phases. Films on Si substrate and graphene on Cu contained only the characteristic peaks. MoS2 films on graphene suppressed the graphene peak as a result of large fluorescence background in the Raman spectrum. Interfacial effects and the presence of an oxygen impurity are considered responsible for the large fluorescence background in the Raman spectrum. X-ray photoelectron spectroscopy indicated substrate interaction with the films on sapphire and Si. Coverage of the film on the substrates is uniform with uniform distribution of the Mo and S as evidenced from the x-ray maps. Atomic force microscopy image revealed the surface of the film on sapphire to be very smooth. Electrical conductance measurements showed the MoS2 film on sapphire is semiconducting but with much lower activation energy compared to the bandgap. The presence of excess Mo in the film is considered responsible for the lower activation energy.
46 schema:genre research_article
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf N1bd52288280647edae1ebbb0b822b53a
50 N8fbfc60d359e48b695f3f34e0c6cae9e
51 sg:journal.1136213
52 schema:name Substrate Effects on Growth of MoS2 Film by Laser Physical Vapor Deposition on Sapphire, Si and Graphene (on Cu)
53 schema:pagination 1010-1021
54 schema:productId N67357f0ddf7f438e95a052ca59f205f0
55 Nd74c114dfd99486ca9661930f7793b3f
56 Nf219652e7b49473db5168051c22984ad
57 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017196436
58 https://doi.org/10.1007/s11664-016-5060-x
59 schema:sdDatePublished 2019-04-11T12:26
60 schema:sdLicense https://scigraph.springernature.com/explorer/license/
61 schema:sdPublisher Na85658b30b9d41b3a5b5ad3173c9314d
62 schema:url https://link.springer.com/10.1007%2Fs11664-016-5060-x
63 sgo:license sg:explorer/license/
64 sgo:sdDataset articles
65 rdf:type schema:ScholarlyArticle
66 N09c1fd43eaad43de90006509d38f9ade rdf:first sg:person.0775615751.10
67 rdf:rest rdf:nil
68 N1bd52288280647edae1ebbb0b822b53a schema:issueNumber 2
69 rdf:type schema:PublicationIssue
70 N5e7fcbf78eb748ce9124fe2a2f37b6dc rdf:first sg:person.011101277463.18
71 rdf:rest N09c1fd43eaad43de90006509d38f9ade
72 N67357f0ddf7f438e95a052ca59f205f0 schema:name doi
73 schema:value 10.1007/s11664-016-5060-x
74 rdf:type schema:PropertyValue
75 N7b4045f54abc480d837520d3b6e85d68 rdf:first sg:person.015727047567.06
76 rdf:rest N5e7fcbf78eb748ce9124fe2a2f37b6dc
77 N8fbfc60d359e48b695f3f34e0c6cae9e schema:volumeNumber 46
78 rdf:type schema:PublicationVolume
79 Na85658b30b9d41b3a5b5ad3173c9314d schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 Nd74c114dfd99486ca9661930f7793b3f schema:name dimensions_id
82 schema:value pub.1017196436
83 rdf:type schema:PropertyValue
84 Nf219652e7b49473db5168051c22984ad schema:name readcube_id
85 schema:value 51ee33616978bbacfc4eb958e5fbd9bc122a1ae498b52941e1f666a94bcdd2ab
86 rdf:type schema:PropertyValue
87 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
88 schema:name Physical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
91 schema:name Other Physical Sciences
92 rdf:type schema:DefinedTerm
93 sg:journal.1136213 schema:issn 0361-5235
94 1543-186X
95 schema:name Journal of Electronic Materials
96 rdf:type schema:Periodical
97 sg:person.011101277463.18 schema:affiliation https://www.grid.ac/institutes/grid.40803.3f
98 schema:familyName Cui
99 schema:givenName J.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011101277463.18
101 rdf:type schema:Person
102 sg:person.015727047567.06 schema:affiliation https://www.grid.ac/institutes/grid.40803.3f
103 schema:familyName Jagannadham
104 schema:givenName K.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015727047567.06
106 rdf:type schema:Person
107 sg:person.0775615751.10 schema:affiliation https://www.grid.ac/institutes/grid.40803.3f
108 schema:familyName Zhu
109 schema:givenName Y.
110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775615751.10
111 rdf:type schema:Person
112 sg:pub.10.1007/s11249-006-9063-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039161593
113 https://doi.org/10.1007/s11249-006-9063-2
114 rdf:type schema:CreativeWork
115 sg:pub.10.1038/ncomms3642 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044547875
116 https://doi.org/10.1038/ncomms3642
117 rdf:type schema:CreativeWork
118 sg:pub.10.1038/ncomms4087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052806776
119 https://doi.org/10.1038/ncomms4087
120 rdf:type schema:CreativeWork
121 sg:pub.10.1038/ncomms7293 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022146120
122 https://doi.org/10.1038/ncomms7293
123 rdf:type schema:CreativeWork
124 sg:pub.10.1038/nmat3633 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016046837
125 https://doi.org/10.1038/nmat3633
126 rdf:type schema:CreativeWork
127 sg:pub.10.1038/nnano.2010.279 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047704758
128 https://doi.org/10.1038/nnano.2010.279
129 rdf:type schema:CreativeWork
130 sg:pub.10.1038/nnano.2013.100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023181230
131 https://doi.org/10.1038/nnano.2013.100
132 rdf:type schema:CreativeWork
133 sg:pub.10.1038/srep00682 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033536702
134 https://doi.org/10.1038/srep00682
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1002/adma.201104798 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016282353
137 rdf:type schema:CreativeWork
138 https://doi.org/10.1002/ange.201402998 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041544336
139 rdf:type schema:CreativeWork
140 https://doi.org/10.1002/pssr.201409561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034217890
141 rdf:type schema:CreativeWork
142 https://doi.org/10.1016/0038-1098(69)90768-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008721176
143 rdf:type schema:CreativeWork
144 https://doi.org/10.1016/0038-1098(90)90048-g schema:sameAs https://app.dimensions.ai/details/publication/pub.1011236226
145 rdf:type schema:CreativeWork
146 https://doi.org/10.1016/j.cej.2014.07.046 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010550426
147 rdf:type schema:CreativeWork
148 https://doi.org/10.1016/j.diamond.2006.03.019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043511528
149 rdf:type schema:CreativeWork
150 https://doi.org/10.1021/acsnano.5b02078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048659108
151 rdf:type schema:CreativeWork
152 https://doi.org/10.1021/acsnano.6b01636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029512762
153 rdf:type schema:CreativeWork
154 https://doi.org/10.1021/am503719b schema:sameAs https://app.dimensions.ai/details/publication/pub.1055146148
155 rdf:type schema:CreativeWork
156 https://doi.org/10.1021/cm303445s schema:sameAs https://app.dimensions.ai/details/publication/pub.1055415199
157 rdf:type schema:CreativeWork
158 https://doi.org/10.1021/j100393a010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055668762
159 rdf:type schema:CreativeWork
160 https://doi.org/10.1021/j150531a020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055693229
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1021/jp0111867 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056046165
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1021/nl302015v schema:sameAs https://app.dimensions.ai/details/publication/pub.1020530380
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1021/nl503251h schema:sameAs https://app.dimensions.ai/details/publication/pub.1043385874
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1021/nn1003937 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030794634
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1021/nn502776h schema:sameAs https://app.dimensions.ai/details/publication/pub.1040305930
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1039/b107012f schema:sameAs https://app.dimensions.ai/details/publication/pub.1025217252
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1039/b107046k schema:sameAs https://app.dimensions.ai/details/publication/pub.1002149336
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1039/c3ee42591f schema:sameAs https://app.dimensions.ai/details/publication/pub.1011465566
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1063/1.104276 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057651847
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1063/1.3441263 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057952385
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1063/1.4852615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010112326
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1063/1.4894256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043354114
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1063/1.4921920 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032304924
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1073/pnas.0502848102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036398807
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1103/physrevb.64.075414 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060600456
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1103/physrevlett.105.136805 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004648868
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1126/science.1243879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053324522
195 rdf:type schema:CreativeWork
196 https://doi.org/10.1126/science.1246501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015143253
197 rdf:type schema:CreativeWork
198 https://www.grid.ac/institutes/grid.40803.3f schema:alternateName North Carolina State University
199 schema:name Department of Materials Science and Engineering, North Carolina State University, 27695, Raleigh, NC, USA
200 Department of Mechanical and Aerospace Engineering, North Carolina State University, 27695, Raleigh, NC, USA
201 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...