Förster Resonance Energy Transfer and Harvesting in II–VI Fractional Monolayer Structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-10-14

AUTHORS

T. V. Shubina, M. A. Semina, K. G. Belyaev, A. V. Rodina, A. A. Toropov, S. V. Ivanov

ABSTRACT

We report on Förster resonance energy transfer in the dense arrays of epitaxial quantum dots (QDs), formed by fractional monolayer CdSe insertions within a ZnSe matrix. In such arrays comprising the QDs of different sizes, the energy transfer can take place between the ground levels of small QDs and the excited levels of large radiating QDs, when these states are in resonance. This mechanism provides directional excitation of a limited number of the large QDs possessing the excited levels. It reveals itself by the shrinkage of photoluminescence (PL) bands and the appearance of the narrow single excitonic lines in micro-PL spectra. The strong shortening of characteristic PL decay times in the energy-donating QDs is observed when the distance between them and the energy-accepting QDs decreases. Photoluminescence excitation spectroscopy demonstrates the switching of the dominant energy transfer mechanism at the energy predicted by theoretical modeling of the excitonic levels in the QD arrays. Our results pave the way for engineering of the architecture of excitonic levels in the QD arrays to realize efficient nano-emitters. More... »

PAGES

3922-3926

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-016-5007-2

DOI

http://dx.doi.org/10.1007/s11664-016-5007-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023379159


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 26 Polytekhnicheskaya, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 26 Polytekhnicheskaya, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shubina", 
        "givenName": "T. V.", 
        "id": "sg:person.010524222613.44", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010524222613.44"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 26 Polytekhnicheskaya, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 26 Polytekhnicheskaya, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Semina", 
        "givenName": "M. A.", 
        "id": "sg:person.07531404462.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07531404462.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 26 Polytekhnicheskaya, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 26 Polytekhnicheskaya, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Belyaev", 
        "givenName": "K. G.", 
        "id": "sg:person.015525515557.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015525515557.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 26 Polytekhnicheskaya, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 26 Polytekhnicheskaya, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rodina", 
        "givenName": "A. V.", 
        "id": "sg:person.0725713322.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725713322.11"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 26 Polytekhnicheskaya, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 26 Polytekhnicheskaya, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Toropov", 
        "givenName": "A. A.", 
        "id": "sg:person.014125142357.87", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014125142357.87"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute, 26 Polytekhnicheskaya, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Institute, 26 Polytekhnicheskaya, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ivanov", 
        "givenName": "S. V.", 
        "id": "sg:person.01064304443.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064304443.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s1063782615030215", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029042419", 
          "https://doi.org/10.1134/s1063782615030215"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063776116030092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008483364", 
          "https://doi.org/10.1134/s1063776116030092"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-10-14", 
    "datePublishedReg": "2016-10-14", 
    "description": "We report on F\u00f6rster resonance energy transfer in the dense arrays of \tepitaxial quantum dots (QDs), formed by fractional monolayer CdSe insertions within a ZnSe matrix. In such arrays comprising the QDs of different sizes, the energy transfer can take place between the ground levels of small QDs and the excited levels of large radiating QDs, when these states are in resonance. This mechanism provides directional excitation of a limited number of the large QDs possessing the excited levels. It reveals itself by the shrinkage of photoluminescence (PL) bands and the appearance of the narrow single excitonic lines in micro-PL spectra. The strong shortening of characteristic PL decay times in the energy-donating QDs is observed when the distance between them and the energy-accepting QDs decreases. Photoluminescence excitation spectroscopy demonstrates the switching of the dominant energy transfer mechanism at the energy predicted by theoretical modeling of the excitonic levels in the QD arrays. Our results pave the way for engineering \tof the architecture of excitonic levels in the QD arrays to realize efficient \tnano-emitters.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11664-016-5007-2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "keywords": [
      "quantum dots", 
      "F\u00f6rster resonance energy transfer", 
      "excited levels", 
      "excitonic levels", 
      "energy transfer", 
      "resonance energy transfer", 
      "single excitonic lines", 
      "dominant energy transfer mechanism", 
      "epitaxial quantum dots", 
      "photoluminescence excitation spectroscopy", 
      "large quantum dots", 
      "small quantum dots", 
      "PL decay time", 
      "energy transfer mechanism", 
      "excitation spectroscopy", 
      "QD arrays", 
      "ZnSe matrix", 
      "CdSe insertions", 
      "directional excitation", 
      "excitonic lines", 
      "decay time", 
      "PL spectra", 
      "strong shortening", 
      "monolayer structure", 
      "photoluminescence band", 
      "theoretical modeling", 
      "dense array", 
      "such arrays", 
      "transfer mechanism", 
      "ground level", 
      "dots", 
      "excitation", 
      "array", 
      "spectroscopy", 
      "resonance", 
      "energy", 
      "spectra", 
      "transfer", 
      "switching", 
      "band", 
      "state", 
      "distance", 
      "structure", 
      "different sizes", 
      "lines", 
      "mechanism", 
      "size", 
      "harvesting", 
      "time", 
      "results", 
      "matrix", 
      "modeling", 
      "appearance", 
      "engineering", 
      "way", 
      "place", 
      "levels", 
      "decrease", 
      "number", 
      "limited number", 
      "architecture", 
      "shrinkage", 
      "insertion", 
      "shortening", 
      "fractional monolayer CdSe insertions", 
      "monolayer CdSe insertions", 
      "narrow single excitonic lines", 
      "characteristic PL decay times", 
      "energy-donating QDs", 
      "energy-accepting QDs decreases", 
      "QDs decreases", 
      "Fractional Monolayer Structures"
    ], 
    "name": "F\u00f6rster Resonance Energy Transfer and Harvesting in II\u2013VI Fractional Monolayer Structures", 
    "pagination": "3922-3926", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023379159"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-016-5007-2"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-016-5007-2", 
      "https://app.dimensions.ai/details/publication/pub.1023379159"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_717.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11664-016-5007-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5007-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5007-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5007-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-5007-2'


 

This table displays all metadata directly associated to this object as RDF triples.

173 TRIPLES      22 PREDICATES      99 URIs      89 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-016-5007-2 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N8c49a52af1094bf3a0d7880c03828949
4 schema:citation sg:pub.10.1134/s1063776116030092
5 sg:pub.10.1134/s1063782615030215
6 schema:datePublished 2016-10-14
7 schema:datePublishedReg 2016-10-14
8 schema:description We report on Förster resonance energy transfer in the dense arrays of epitaxial quantum dots (QDs), formed by fractional monolayer CdSe insertions within a ZnSe matrix. In such arrays comprising the QDs of different sizes, the energy transfer can take place between the ground levels of small QDs and the excited levels of large radiating QDs, when these states are in resonance. This mechanism provides directional excitation of a limited number of the large QDs possessing the excited levels. It reveals itself by the shrinkage of photoluminescence (PL) bands and the appearance of the narrow single excitonic lines in micro-PL spectra. The strong shortening of characteristic PL decay times in the energy-donating QDs is observed when the distance between them and the energy-accepting QDs decreases. Photoluminescence excitation spectroscopy demonstrates the switching of the dominant energy transfer mechanism at the energy predicted by theoretical modeling of the excitonic levels in the QD arrays. Our results pave the way for engineering of the architecture of excitonic levels in the QD arrays to realize efficient nano-emitters.
9 schema:genre article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N086fca80f5ba478287c361a6db1d77bf
13 Ncb712774335946d190fc7145c65cbbea
14 sg:journal.1136213
15 schema:keywords CdSe insertions
16 Fractional Monolayer Structures
17 Förster resonance energy transfer
18 PL decay time
19 PL spectra
20 QD arrays
21 QDs decreases
22 ZnSe matrix
23 appearance
24 architecture
25 array
26 band
27 characteristic PL decay times
28 decay time
29 decrease
30 dense array
31 different sizes
32 directional excitation
33 distance
34 dominant energy transfer mechanism
35 dots
36 energy
37 energy transfer
38 energy transfer mechanism
39 energy-accepting QDs decreases
40 energy-donating QDs
41 engineering
42 epitaxial quantum dots
43 excitation
44 excitation spectroscopy
45 excited levels
46 excitonic levels
47 excitonic lines
48 fractional monolayer CdSe insertions
49 ground level
50 harvesting
51 insertion
52 large quantum dots
53 levels
54 limited number
55 lines
56 matrix
57 mechanism
58 modeling
59 monolayer CdSe insertions
60 monolayer structure
61 narrow single excitonic lines
62 number
63 photoluminescence band
64 photoluminescence excitation spectroscopy
65 place
66 quantum dots
67 resonance
68 resonance energy transfer
69 results
70 shortening
71 shrinkage
72 single excitonic lines
73 size
74 small quantum dots
75 spectra
76 spectroscopy
77 state
78 strong shortening
79 structure
80 such arrays
81 switching
82 theoretical modeling
83 time
84 transfer
85 transfer mechanism
86 way
87 schema:name Förster Resonance Energy Transfer and Harvesting in II–VI Fractional Monolayer Structures
88 schema:pagination 3922-3926
89 schema:productId N128c6b190b984a5caecc202a6471a74c
90 N3441088e69da4102be33c06fcecf009b
91 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023379159
92 https://doi.org/10.1007/s11664-016-5007-2
93 schema:sdDatePublished 2021-11-01T18:28
94 schema:sdLicense https://scigraph.springernature.com/explorer/license/
95 schema:sdPublisher N38eb82d8e7ff4d23aa84fb2e4ceba1b9
96 schema:url https://doi.org/10.1007/s11664-016-5007-2
97 sgo:license sg:explorer/license/
98 sgo:sdDataset articles
99 rdf:type schema:ScholarlyArticle
100 N086fca80f5ba478287c361a6db1d77bf schema:issueNumber 7
101 rdf:type schema:PublicationIssue
102 N0be39b9aeed94fd8877885f20842ee72 rdf:first sg:person.01064304443.31
103 rdf:rest rdf:nil
104 N128c6b190b984a5caecc202a6471a74c schema:name doi
105 schema:value 10.1007/s11664-016-5007-2
106 rdf:type schema:PropertyValue
107 N18c2c018f7e24c42847b6103bee8f4c5 rdf:first sg:person.014125142357.87
108 rdf:rest N0be39b9aeed94fd8877885f20842ee72
109 N3441088e69da4102be33c06fcecf009b schema:name dimensions_id
110 schema:value pub.1023379159
111 rdf:type schema:PropertyValue
112 N38eb82d8e7ff4d23aa84fb2e4ceba1b9 schema:name Springer Nature - SN SciGraph project
113 rdf:type schema:Organization
114 N8c49a52af1094bf3a0d7880c03828949 rdf:first sg:person.010524222613.44
115 rdf:rest Nbfc532a17a0244ee951ff72b1a43e8f0
116 Naee1e0139cac49b3aa3469a8f0dcc355 rdf:first sg:person.0725713322.11
117 rdf:rest N18c2c018f7e24c42847b6103bee8f4c5
118 Nbfc532a17a0244ee951ff72b1a43e8f0 rdf:first sg:person.07531404462.46
119 rdf:rest Ncacc5e4c7c454257b263dd75ef526fa0
120 Ncacc5e4c7c454257b263dd75ef526fa0 rdf:first sg:person.015525515557.15
121 rdf:rest Naee1e0139cac49b3aa3469a8f0dcc355
122 Ncb712774335946d190fc7145c65cbbea schema:volumeNumber 46
123 rdf:type schema:PublicationVolume
124 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
125 schema:name Physical Sciences
126 rdf:type schema:DefinedTerm
127 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
128 schema:name Other Physical Sciences
129 rdf:type schema:DefinedTerm
130 sg:journal.1136213 schema:issn 0361-5235
131 1543-186X
132 schema:name Journal of Electronic Materials
133 schema:publisher Springer Nature
134 rdf:type schema:Periodical
135 sg:person.010524222613.44 schema:affiliation grid-institutes:grid.423485.c
136 schema:familyName Shubina
137 schema:givenName T. V.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010524222613.44
139 rdf:type schema:Person
140 sg:person.01064304443.31 schema:affiliation grid-institutes:grid.423485.c
141 schema:familyName Ivanov
142 schema:givenName S. V.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064304443.31
144 rdf:type schema:Person
145 sg:person.014125142357.87 schema:affiliation grid-institutes:grid.423485.c
146 schema:familyName Toropov
147 schema:givenName A. A.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014125142357.87
149 rdf:type schema:Person
150 sg:person.015525515557.15 schema:affiliation grid-institutes:grid.423485.c
151 schema:familyName Belyaev
152 schema:givenName K. G.
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015525515557.15
154 rdf:type schema:Person
155 sg:person.0725713322.11 schema:affiliation grid-institutes:grid.423485.c
156 schema:familyName Rodina
157 schema:givenName A. V.
158 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0725713322.11
159 rdf:type schema:Person
160 sg:person.07531404462.46 schema:affiliation grid-institutes:grid.423485.c
161 schema:familyName Semina
162 schema:givenName M. A.
163 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07531404462.46
164 rdf:type schema:Person
165 sg:pub.10.1134/s1063776116030092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008483364
166 https://doi.org/10.1134/s1063776116030092
167 rdf:type schema:CreativeWork
168 sg:pub.10.1134/s1063782615030215 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029042419
169 https://doi.org/10.1134/s1063782615030215
170 rdf:type schema:CreativeWork
171 grid-institutes:grid.423485.c schema:alternateName Ioffe Institute, 26 Polytekhnicheskaya, 194021, St. Petersburg, Russia
172 schema:name Ioffe Institute, 26 Polytekhnicheskaya, 194021, St. Petersburg, Russia
173 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...