Half-Heusler Alloys for Efficient Thermoelectric Power Conversion View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2016-07-26

AUTHORS

Long Chen, Xiaoyu Zeng, Terry M. Tritt, S. Joseph Poon

ABSTRACT

Half-Heusler (HH) phases (space group F43m, Clb) are increasingly gaining attention as promising thermoelectric materials in view of their thermal stability and environmental benignity as well as efficient power output. Until recently, the verifiable dimensionless figure of merit (ZT) of HH phases has remained moderate near 1, which limits the power conversion efficiency of these materials. We report herein ZT ∼ 1.3 in n-type (Hf,Zr)NiSn alloys near 850 K developed through elemental substitution and simultaneous embedment of nanoparticles in the HH matrix, obtained by annealing the samples close to their melting temperatures. Introduction of mass fluctuation and scattering centers play a key role in the high ZT measured, as shown by the reduction of thermal conductivity and increase of thermopower. Based on computation, the power conversion efficiency of a n–p couple module based on the new n-type (Hf,Zr,Ti)NiSn particles-in-matrix composite and recently reported high-ZTp-type HH phases is expected to reach 13%, comparable to that of state-of-the-art materials, but with the mentioned additional materials and environmental attributes. Since the high efficiency is obtained without tuning the microstructure of the HH phases, it leaves room for further optimization. More... »

PAGES

5554-5560

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-016-4810-0

DOI

http://dx.doi.org/10.1007/s11664-016-4810-0

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020653775


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chen", 
        "givenName": "Long", 
        "id": "sg:person.016412177754.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016412177754.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics and Astronomy, Clemson University, 29634-0978, Clemson, SC, USA", 
          "id": "http://www.grid.ac/institutes/grid.26090.3d", 
          "name": [
            "Department of Physics and Astronomy, Clemson University, 29634-0978, Clemson, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zeng", 
        "givenName": "Xiaoyu", 
        "id": "sg:person.0764036225.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764036225.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Materials Science and Engineering Department, Clemson University, 29634, Clemson, SC, USA", 
          "id": "http://www.grid.ac/institutes/grid.26090.3d", 
          "name": [
            "Department of Physics and Astronomy, Clemson University, 29634-0978, Clemson, SC, USA", 
            "Materials Science and Engineering Department, Clemson University, 29634, Clemson, SC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tritt", 
        "givenName": "Terry M.", 
        "id": "sg:person.014267530043.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014267530043.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA", 
          "id": "http://www.grid.ac/institutes/grid.27755.32", 
          "name": [
            "Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poon", 
        "givenName": "S. Joseph", 
        "id": "sg:person.010252015157.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s11664-014-3600-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012280607", 
          "https://doi.org/10.1007/s11664-014-3600-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1557/jmr.2011.329", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033377774", 
          "https://doi.org/10.1557/jmr.2011.329"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-013-2863-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031348925", 
          "https://doi.org/10.1007/s11664-013-2863-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s11664-013-2471-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012942894", 
          "https://doi.org/10.1007/s11664-013-2471-9"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/srep06888", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020282480", 
          "https://doi.org/10.1038/srep06888"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms5515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053497046", 
          "https://doi.org/10.1038/ncomms5515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ncomms9144", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001250683", 
          "https://doi.org/10.1038/ncomms9144"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-07-26", 
    "datePublishedReg": "2016-07-26", 
    "description": "Half-Heusler (HH) phases (space group F43m, Clb) are increasingly gaining attention as promising thermoelectric materials in view of their thermal stability and environmental benignity as well as efficient power output. Until recently, the verifiable dimensionless figure of merit (ZT) of HH phases has remained moderate near 1, which limits the power conversion efficiency of these materials. We report herein ZT\u00a0\u223c\u00a01.3 in n-type (Hf,Zr)NiSn alloys near 850\u00a0K developed through elemental substitution and simultaneous embedment of nanoparticles in the HH matrix, obtained by annealing the samples close to their melting temperatures. Introduction of mass fluctuation and scattering centers play a key role in the high ZT measured, as shown by the reduction of thermal conductivity and increase of thermopower. Based on computation, the power conversion efficiency of a n\u2013p couple module based on the new n-type (Hf,Zr,Ti)NiSn particles-in-matrix composite and recently reported high-ZTp-type HH phases is expected to reach 13%, comparable to that of state-of-the-art materials, but with the mentioned additional materials and environmental attributes. Since the high efficiency is obtained without tuning the microstructure of the HH phases, it leaves room for further optimization.", 
    "genre": "article", 
    "id": "sg:pub.10.1007/s11664-016-4810-0", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "power conversion efficiency", 
      "conversion efficiency", 
      "efficient power output", 
      "n-type", 
      "promising thermoelectric material", 
      "half-Heusler alloys", 
      "thermoelectric power conversion", 
      "HH phase", 
      "matrix composites", 
      "power conversion", 
      "thermal conductivity", 
      "high ZT", 
      "thermoelectric materials", 
      "couple modules", 
      "dimensionless figure", 
      "environmental benignity", 
      "power output", 
      "half-Heusler phases", 
      "HH matrix", 
      "new n-type", 
      "thermal stability", 
      "high efficiency", 
      "art materials", 
      "increase of thermopower", 
      "elemental substitution", 
      "ZT", 
      "melting temperature", 
      "materials", 
      "efficiency", 
      "further optimization", 
      "composites", 
      "alloy", 
      "microstructure", 
      "mass fluctuations", 
      "phase", 
      "embedment", 
      "conductivity", 
      "Zr", 
      "particles", 
      "additional material", 
      "temperature", 
      "nanoparticles", 
      "optimization", 
      "thermopower", 
      "stability", 
      "module", 
      "matrix", 
      "merits", 
      "HF", 
      "output", 
      "conversion", 
      "fluctuations", 
      "benignity", 
      "computation", 
      "reduction", 
      "environmental attributes", 
      "increase", 
      "figures", 
      "room", 
      "samples", 
      "key role", 
      "introduction", 
      "state", 
      "attention", 
      "attributes", 
      "substitution", 
      "view", 
      "center", 
      "role"
    ], 
    "name": "Half-Heusler Alloys for Efficient Thermoelectric Power Conversion", 
    "pagination": "5554-5560", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020653775"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-016-4810-0"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-016-4810-0", 
      "https://app.dimensions.ai/details/publication/pub.1020653775"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:42", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_705.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1007/s11664-016-4810-0"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4810-0'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4810-0'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4810-0'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4810-0'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      21 PREDICATES      100 URIs      85 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-016-4810-0 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N6b06b92f514a40f1baecf544a679e159
4 schema:citation sg:pub.10.1007/s11664-013-2471-9
5 sg:pub.10.1007/s11664-013-2863-x
6 sg:pub.10.1007/s11664-014-3600-9
7 sg:pub.10.1038/ncomms5515
8 sg:pub.10.1038/ncomms9144
9 sg:pub.10.1038/srep06888
10 sg:pub.10.1557/jmr.2011.329
11 schema:datePublished 2016-07-26
12 schema:datePublishedReg 2016-07-26
13 schema:description Half-Heusler (HH) phases (space group F43m, Clb) are increasingly gaining attention as promising thermoelectric materials in view of their thermal stability and environmental benignity as well as efficient power output. Until recently, the verifiable dimensionless figure of merit (ZT) of HH phases has remained moderate near 1, which limits the power conversion efficiency of these materials. We report herein ZT ∼ 1.3 in n-type (Hf,Zr)NiSn alloys near 850 K developed through elemental substitution and simultaneous embedment of nanoparticles in the HH matrix, obtained by annealing the samples close to their melting temperatures. Introduction of mass fluctuation and scattering centers play a key role in the high ZT measured, as shown by the reduction of thermal conductivity and increase of thermopower. Based on computation, the power conversion efficiency of a n–p couple module based on the new n-type (Hf,Zr,Ti)NiSn particles-in-matrix composite and recently reported high-ZTp-type HH phases is expected to reach 13%, comparable to that of state-of-the-art materials, but with the mentioned additional materials and environmental attributes. Since the high efficiency is obtained without tuning the microstructure of the HH phases, it leaves room for further optimization.
14 schema:genre article
15 schema:isAccessibleForFree true
16 schema:isPartOf N7bfa9643d69e4ff195697ef1ce7b4e43
17 N8116e83054bf46b29279c02f8e46085b
18 sg:journal.1136213
19 schema:keywords HF
20 HH matrix
21 HH phase
22 ZT
23 Zr
24 additional material
25 alloy
26 art materials
27 attention
28 attributes
29 benignity
30 center
31 composites
32 computation
33 conductivity
34 conversion
35 conversion efficiency
36 couple modules
37 dimensionless figure
38 efficiency
39 efficient power output
40 elemental substitution
41 embedment
42 environmental attributes
43 environmental benignity
44 figures
45 fluctuations
46 further optimization
47 half-Heusler alloys
48 half-Heusler phases
49 high ZT
50 high efficiency
51 increase
52 increase of thermopower
53 introduction
54 key role
55 mass fluctuations
56 materials
57 matrix
58 matrix composites
59 melting temperature
60 merits
61 microstructure
62 module
63 n-type
64 nanoparticles
65 new n-type
66 optimization
67 output
68 particles
69 phase
70 power conversion
71 power conversion efficiency
72 power output
73 promising thermoelectric material
74 reduction
75 role
76 room
77 samples
78 stability
79 state
80 substitution
81 temperature
82 thermal conductivity
83 thermal stability
84 thermoelectric materials
85 thermoelectric power conversion
86 thermopower
87 view
88 schema:name Half-Heusler Alloys for Efficient Thermoelectric Power Conversion
89 schema:pagination 5554-5560
90 schema:productId N8b6cdd01042e4711adb002c56409e499
91 Nd5eeabc48c2245e5a4ca8df7ab890711
92 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020653775
93 https://doi.org/10.1007/s11664-016-4810-0
94 schema:sdDatePublished 2022-10-01T06:42
95 schema:sdLicense https://scigraph.springernature.com/explorer/license/
96 schema:sdPublisher N289e2e847a794e9a8aced18ddfa6b368
97 schema:url https://doi.org/10.1007/s11664-016-4810-0
98 sgo:license sg:explorer/license/
99 sgo:sdDataset articles
100 rdf:type schema:ScholarlyArticle
101 N12403d2877494b9ea0478475abebb9be rdf:first sg:person.014267530043.67
102 rdf:rest N1aba8b0d7ea34bfb98480593204907fd
103 N1aba8b0d7ea34bfb98480593204907fd rdf:first sg:person.010252015157.28
104 rdf:rest rdf:nil
105 N289e2e847a794e9a8aced18ddfa6b368 schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N2cdd27b56a6a4dda8c4a9e84a381e853 rdf:first sg:person.0764036225.20
108 rdf:rest N12403d2877494b9ea0478475abebb9be
109 N6b06b92f514a40f1baecf544a679e159 rdf:first sg:person.016412177754.02
110 rdf:rest N2cdd27b56a6a4dda8c4a9e84a381e853
111 N7bfa9643d69e4ff195697ef1ce7b4e43 schema:issueNumber 11
112 rdf:type schema:PublicationIssue
113 N8116e83054bf46b29279c02f8e46085b schema:volumeNumber 45
114 rdf:type schema:PublicationVolume
115 N8b6cdd01042e4711adb002c56409e499 schema:name dimensions_id
116 schema:value pub.1020653775
117 rdf:type schema:PropertyValue
118 Nd5eeabc48c2245e5a4ca8df7ab890711 schema:name doi
119 schema:value 10.1007/s11664-016-4810-0
120 rdf:type schema:PropertyValue
121 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
122 schema:name Engineering
123 rdf:type schema:DefinedTerm
124 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
125 schema:name Materials Engineering
126 rdf:type schema:DefinedTerm
127 sg:journal.1136213 schema:issn 0361-5235
128 1543-186X
129 schema:name Journal of Electronic Materials
130 schema:publisher Springer Nature
131 rdf:type schema:Periodical
132 sg:person.010252015157.28 schema:affiliation grid-institutes:grid.27755.32
133 schema:familyName Poon
134 schema:givenName S. Joseph
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010252015157.28
136 rdf:type schema:Person
137 sg:person.014267530043.67 schema:affiliation grid-institutes:grid.26090.3d
138 schema:familyName Tritt
139 schema:givenName Terry M.
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014267530043.67
141 rdf:type schema:Person
142 sg:person.016412177754.02 schema:affiliation grid-institutes:grid.27755.32
143 schema:familyName Chen
144 schema:givenName Long
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016412177754.02
146 rdf:type schema:Person
147 sg:person.0764036225.20 schema:affiliation grid-institutes:grid.26090.3d
148 schema:familyName Zeng
149 schema:givenName Xiaoyu
150 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0764036225.20
151 rdf:type schema:Person
152 sg:pub.10.1007/s11664-013-2471-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012942894
153 https://doi.org/10.1007/s11664-013-2471-9
154 rdf:type schema:CreativeWork
155 sg:pub.10.1007/s11664-013-2863-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031348925
156 https://doi.org/10.1007/s11664-013-2863-x
157 rdf:type schema:CreativeWork
158 sg:pub.10.1007/s11664-014-3600-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012280607
159 https://doi.org/10.1007/s11664-014-3600-9
160 rdf:type schema:CreativeWork
161 sg:pub.10.1038/ncomms5515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053497046
162 https://doi.org/10.1038/ncomms5515
163 rdf:type schema:CreativeWork
164 sg:pub.10.1038/ncomms9144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001250683
165 https://doi.org/10.1038/ncomms9144
166 rdf:type schema:CreativeWork
167 sg:pub.10.1038/srep06888 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020282480
168 https://doi.org/10.1038/srep06888
169 rdf:type schema:CreativeWork
170 sg:pub.10.1557/jmr.2011.329 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033377774
171 https://doi.org/10.1557/jmr.2011.329
172 rdf:type schema:CreativeWork
173 grid-institutes:grid.26090.3d schema:alternateName Department of Physics and Astronomy, Clemson University, 29634-0978, Clemson, SC, USA
174 Materials Science and Engineering Department, Clemson University, 29634, Clemson, SC, USA
175 schema:name Department of Physics and Astronomy, Clemson University, 29634-0978, Clemson, SC, USA
176 Materials Science and Engineering Department, Clemson University, 29634, Clemson, SC, USA
177 rdf:type schema:Organization
178 grid-institutes:grid.27755.32 schema:alternateName Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA
179 schema:name Department of Physics, University of Virginia, 22904-4714, Charlottesville, VA, USA
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...