Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-08

AUTHORS

Yilser Devrim, Ayhan Albostan

ABSTRACT

The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications. More... »

PAGES

3900-3907

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-016-4703-2

DOI

http://dx.doi.org/10.1007/s11664-016-4703-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024678974


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Atilim University", 
          "id": "https://www.grid.ac/institutes/grid.440424.2", 
          "name": [
            "Department of Energy System Engineering, Atilim University, Incek, 06836, Ankara, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Devrim", 
        "givenName": "Yilser", 
        "id": "sg:person.012611220227.66", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012611220227.66"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Atilim University", 
          "id": "https://www.grid.ac/institutes/grid.440424.2", 
          "name": [
            "Department of Energy System Engineering, Atilim University, Incek, 06836, Ankara, Turkey"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Albostan", 
        "givenName": "Ayhan", 
        "id": "sg:person.011604402312.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011604402312.92"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.scient.2011.11.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001859054"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2013.04.029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003277018"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.scient.2012.02.027", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009021243"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2012.02.011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009317242"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jelechem.2012.07.020", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009415385"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2010.10.056", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014457795"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la801744a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018142774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la801744a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018142774"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2738(97)00319-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018282124"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2012.04.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019352406"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.materresbull.2012.02.025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025114923"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/fuce.201100202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026046184"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2014.10.129", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026495085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apcatb.2008.09.030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026810884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.apsusc.2014.04.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027060315"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/apj.1676", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027120569"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2015.12.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027415135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2015.12.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027415135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2015.12.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027415135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2015.12.069", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027415135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcis.2015.06.031", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027710571"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jpowsour.2010.02.044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029218664"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.carbon.2009.11.034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033784312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/fuce.201300039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037333694"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.nanoen.2012.05.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039462239"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ijhydene.2011.04.186", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047561515"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201001068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047953299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.201001068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047953299"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.memsci.2014.01.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051343771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm052660e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055412078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cm052660e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055412078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp107872z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056079182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/jp107872z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056079182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3144/expresspolymlett.2012.107", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071053622"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-08", 
    "datePublishedReg": "2016-08-01", 
    "description": "The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70\u00b0C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70\u00b0C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11664-016-4703-2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell", 
    "pagination": "3900-3907", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "7592481f415107b05b51fb15fa716c90701b9ed9155127d118ea4f7b972d5161"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-016-4703-2"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024678974"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-016-4703-2", 
      "https://app.dimensions.ai/details/publication/pub.1024678974"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000362_0000000362/records_87112_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1007%2Fs11664-016-4703-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4703-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4703-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4703-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4703-2'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-016-4703-2 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N34b286b7927945f1ba879da4d094dbaf
4 schema:citation https://doi.org/10.1002/adma.201001068
5 https://doi.org/10.1002/apj.1676
6 https://doi.org/10.1002/fuce.201100202
7 https://doi.org/10.1002/fuce.201300039
8 https://doi.org/10.1016/j.apcatb.2008.09.030
9 https://doi.org/10.1016/j.apcatb.2012.04.022
10 https://doi.org/10.1016/j.apsusc.2013.04.029
11 https://doi.org/10.1016/j.apsusc.2014.04.052
12 https://doi.org/10.1016/j.carbon.2009.11.034
13 https://doi.org/10.1016/j.carbon.2010.10.056
14 https://doi.org/10.1016/j.ijhydene.2011.04.186
15 https://doi.org/10.1016/j.ijhydene.2014.10.129
16 https://doi.org/10.1016/j.ijhydene.2015.12.069
17 https://doi.org/10.1016/j.jcis.2015.06.031
18 https://doi.org/10.1016/j.jelechem.2012.07.020
19 https://doi.org/10.1016/j.jpowsour.2010.02.044
20 https://doi.org/10.1016/j.jpowsour.2012.02.011
21 https://doi.org/10.1016/j.materresbull.2012.02.025
22 https://doi.org/10.1016/j.memsci.2014.01.017
23 https://doi.org/10.1016/j.nanoen.2012.05.001
24 https://doi.org/10.1016/j.scient.2011.11.039
25 https://doi.org/10.1016/j.scient.2012.02.027
26 https://doi.org/10.1016/s0167-2738(97)00319-6
27 https://doi.org/10.1021/cm052660e
28 https://doi.org/10.1021/jp107872z
29 https://doi.org/10.1021/la801744a
30 https://doi.org/10.3144/expresspolymlett.2012.107
31 schema:datePublished 2016-08
32 schema:datePublishedReg 2016-08-01
33 schema:description The aim of this study is the preparation and characterization of a graphene-supported platinum (Pt) catalyst for proton exchange membrane fuel cell (PEMFC) applications. The graphene-supported Pt catalysts were prepared by chemical reduction of graphene and chloroplatinic acid (H2PtCl6) in ethylene glycol. X-ray powder diffraction, thermogravimetric analysis (TGA) and scanning electron microscopy have been used to analyze structure and surface morphology of the graphene-supported catalyst. The TGA results showed that the Pt loading of the graphene-supported catalyst was 31%. The proof of the Pt particles on the support surfaces was also verified by energy-dispersive x-ray spectroscopy analysis. The commercial carbon-supported catalyst and prepared Pt/graphene catalysts were used as both anode and cathode electrodes for PEMFC at ambient pressure and 70°C. The maximum power density was obtained for the Pt/graphene-based membrane electrode assembly (MEA) with H2/O2 reactant gases as 0.925 W cm2. The maximum current density of the Pt/graphene-based MEA can reach 1.267 and 0.43 A/cm2 at 0.6 V with H2/O2 and H2/air, respectively. The MEA prepared by the Pt/graphene catalyst shows good stability in long-term PEMFC durability tests. The PEMFC cell voltage was maintained at 0.6 V without apparent voltage drop when operated at 0.43 A/cm2 constant current density and 70°C for 400 h. As a result, PEMFC performance was found to be superlative for the graphene-supported Pt catalyst compared with the Pt/C commercial catalyst. The results indicate the graphene-supported Pt catalyst could be utilized as the electrocatalyst for PEMFC applications.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N38b9848254d74b03ac0f0e554a48e736
38 Naa186207b2f945efbcdf736f327d2e04
39 sg:journal.1136213
40 schema:name Graphene-Supported Platinum Catalyst-Based Membrane Electrode Assembly for PEM Fuel Cell
41 schema:pagination 3900-3907
42 schema:productId N5617552527c94d34adf0a4eba648cb40
43 Nba30b7e4132346c182014441a8823c13
44 Nc043ae4cbd8f41b3a0aeb73efd06be67
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024678974
46 https://doi.org/10.1007/s11664-016-4703-2
47 schema:sdDatePublished 2019-04-11T12:26
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N872993937e554678a582ce4741c95140
50 schema:url https://link.springer.com/10.1007%2Fs11664-016-4703-2
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N34b286b7927945f1ba879da4d094dbaf rdf:first sg:person.012611220227.66
55 rdf:rest N5de1711e20004e66b0335a46cc0dbbb0
56 N38b9848254d74b03ac0f0e554a48e736 schema:issueNumber 8
57 rdf:type schema:PublicationIssue
58 N5617552527c94d34adf0a4eba648cb40 schema:name dimensions_id
59 schema:value pub.1024678974
60 rdf:type schema:PropertyValue
61 N5de1711e20004e66b0335a46cc0dbbb0 rdf:first sg:person.011604402312.92
62 rdf:rest rdf:nil
63 N872993937e554678a582ce4741c95140 schema:name Springer Nature - SN SciGraph project
64 rdf:type schema:Organization
65 Naa186207b2f945efbcdf736f327d2e04 schema:volumeNumber 45
66 rdf:type schema:PublicationVolume
67 Nba30b7e4132346c182014441a8823c13 schema:name readcube_id
68 schema:value 7592481f415107b05b51fb15fa716c90701b9ed9155127d118ea4f7b972d5161
69 rdf:type schema:PropertyValue
70 Nc043ae4cbd8f41b3a0aeb73efd06be67 schema:name doi
71 schema:value 10.1007/s11664-016-4703-2
72 rdf:type schema:PropertyValue
73 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
74 schema:name Chemical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
77 schema:name Physical Chemistry (incl. Structural)
78 rdf:type schema:DefinedTerm
79 sg:journal.1136213 schema:issn 0361-5235
80 1543-186X
81 schema:name Journal of Electronic Materials
82 rdf:type schema:Periodical
83 sg:person.011604402312.92 schema:affiliation https://www.grid.ac/institutes/grid.440424.2
84 schema:familyName Albostan
85 schema:givenName Ayhan
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011604402312.92
87 rdf:type schema:Person
88 sg:person.012611220227.66 schema:affiliation https://www.grid.ac/institutes/grid.440424.2
89 schema:familyName Devrim
90 schema:givenName Yilser
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012611220227.66
92 rdf:type schema:Person
93 https://doi.org/10.1002/adma.201001068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047953299
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1002/apj.1676 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027120569
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1002/fuce.201100202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026046184
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1002/fuce.201300039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037333694
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.apcatb.2008.09.030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026810884
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.apcatb.2012.04.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019352406
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.apsusc.2013.04.029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003277018
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/j.apsusc.2014.04.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027060315
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/j.carbon.2009.11.034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033784312
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/j.carbon.2010.10.056 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014457795
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/j.ijhydene.2011.04.186 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047561515
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1016/j.ijhydene.2014.10.129 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026495085
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/j.ijhydene.2015.12.069 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027415135
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.jcis.2015.06.031 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027710571
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/j.jelechem.2012.07.020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009415385
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1016/j.jpowsour.2010.02.044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029218664
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.jpowsour.2012.02.011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009317242
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.materresbull.2012.02.025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025114923
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.memsci.2014.01.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051343771
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.nanoen.2012.05.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039462239
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.scient.2011.11.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001859054
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/j.scient.2012.02.027 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009021243
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1016/s0167-2738(97)00319-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018282124
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1021/cm052660e schema:sameAs https://app.dimensions.ai/details/publication/pub.1055412078
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1021/jp107872z schema:sameAs https://app.dimensions.ai/details/publication/pub.1056079182
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1021/la801744a schema:sameAs https://app.dimensions.ai/details/publication/pub.1018142774
144 rdf:type schema:CreativeWork
145 https://doi.org/10.3144/expresspolymlett.2012.107 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071053622
146 rdf:type schema:CreativeWork
147 https://www.grid.ac/institutes/grid.440424.2 schema:alternateName Atilim University
148 schema:name Department of Energy System Engineering, Atilim University, Incek, 06836, Ankara, Turkey
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...