Incorporation of Mg in Free-Standing HVPE GaN Substrates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06

AUTHORS

M. E. Zvanut, J. Dashdorj, J. A. Freitas, E. R. Glaser, W. R. Willoughby, J. H. Leach, K. Udwary

ABSTRACT

Mg, the only effective p-type dopant for nitrides, is well studied in thin films due to the important role of the impurity in light-emitting diodes and high-power electronics. However, there are few reports of Mg in thick free-standing GaN substrates. Here, we demonstrate successful incorporation of Mg into GaN grown by hydride vapor-phase epitaxy (HVPE) using metallic Mg as the doping source. The concentration of Mg obtained from four separate growth runs ranged between 1016 cm−3 and 1019 cm−3. Raman spectroscopy and x-ray diffraction revealed that Mg did not induce stress or perturb the crystalline quality of the HVPE GaN substrates. Photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies were performed to investigate the types of point defects in the crystals. The near-band-edge excitonic and shallow donor–shallow acceptor radiative recombination processes involving shallow Mg acceptors were prominent in the PL spectrum of a sample doped to 3 × 1018 cm−3, while the EPR signal was also thought to represent a shallow Mg acceptor. Detection of this signal reflects minimization of nonuniform strain obtained in the thick free-standing HVPE GaN compared with heteroepitaxial thin films. More... »

PAGES

2692-2696

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-016-4413-9

DOI

http://dx.doi.org/10.1007/s11664-016-4413-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017291436


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Alabama at Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "University of Alabama at Birmingham, 35294, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zvanut", 
        "givenName": "M. E.", 
        "id": "sg:person.014566574144.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014566574144.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alabama at Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "University of Alabama at Birmingham, 35294, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dashdorj", 
        "givenName": "J.", 
        "id": "sg:person.012043430753.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012043430753.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Naval Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Naval Research Laboratory, 20375, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Freitas", 
        "givenName": "J. A.", 
        "id": "sg:person.011255733331.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255733331.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Naval Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Naval Research Laboratory, 20375, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glaser", 
        "givenName": "E. R.", 
        "id": "sg:person.015325601101.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015325601101.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alabama at Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "University of Alabama at Birmingham, 35294, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Willoughby", 
        "givenName": "W. R.", 
        "id": "sg:person.010250454771.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010250454771.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyma Technologies (United States)", 
          "id": "https://www.grid.ac/institutes/grid.450016.6", 
          "name": [
            "Kyma Technologies Inc., 27617, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leach", 
        "givenName": "J. H.", 
        "id": "sg:person.01213441125.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213441125.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyma Technologies (United States)", 
          "id": "https://www.grid.ac/institutes/grid.450016.6", 
          "name": [
            "Kyma Technologies Inc., 27617, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Udwary", 
        "givenName": "K.", 
        "id": "sg:person.014764173061.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014764173061.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/2053-1591/1/2/025901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007309898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physb.2007.08.179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012293534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssc.200778685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020785020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cg5013523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023705585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssc.200880912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025142483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2011.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025193870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/29/7/075004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025402501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssc.200303130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029881813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2002042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030145265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(01)01456-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042941696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.365711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057993175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4769228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058064442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4794094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058070471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/14/9/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058959588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.17745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.17745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.165209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.165209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.195201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060608030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.195201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060608030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.235501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.235501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2009.2030699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2014.2360861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061596431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/apex.6.111001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073831625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/jjap.53.05fa04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073838526"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06", 
    "datePublishedReg": "2016-06-01", 
    "description": "Mg, the only effective p-type dopant for nitrides, is well studied in thin films due to the important role of the impurity in light-emitting diodes and high-power electronics. However, there are few reports of Mg in thick free-standing GaN substrates. Here, we demonstrate successful incorporation of Mg into GaN grown by hydride vapor-phase epitaxy (HVPE) using metallic Mg as the doping source. The concentration of Mg obtained from four separate growth runs ranged between 1016 cm\u22123 and 1019 cm\u22123. Raman spectroscopy and x-ray diffraction revealed that Mg did not induce stress or perturb the crystalline quality of the HVPE GaN substrates. Photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies were performed to investigate the types of point defects in the crystals. The near-band-edge excitonic and shallow donor\u2013shallow acceptor radiative recombination processes involving shallow Mg acceptors were prominent in the PL spectrum of a sample doped to 3 \u00d7 1018 cm\u22123, while the EPR signal was also thought to represent a shallow Mg acceptor. Detection of this signal reflects minimization of nonuniform strain obtained in the thick free-standing HVPE GaN compared with heteroepitaxial thin films.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11664-016-4413-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3484860", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Incorporation of Mg in Free-Standing HVPE GaN Substrates", 
    "pagination": "2692-2696", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5262153121c59858ffd50091735be24cf576fb5976dbc7873e42402996ff96d4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-016-4413-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017291436"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-016-4413-9", 
      "https://app.dimensions.ai/details/publication/pub.1017291436"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11664-016-4413-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4413-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4413-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4413-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4413-9'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-016-4413-9 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N7229b554793649869af4ff22d5200e0c
4 schema:citation https://doi.org/10.1002/pssc.200303130
5 https://doi.org/10.1002/pssc.200778685
6 https://doi.org/10.1002/pssc.200880912
7 https://doi.org/10.1016/j.jcrysgro.2011.12.017
8 https://doi.org/10.1016/j.physb.2007.08.179
9 https://doi.org/10.1016/s0022-0248(01)01456-7
10 https://doi.org/10.1021/cg5013523
11 https://doi.org/10.1063/1.365711
12 https://doi.org/10.1063/1.4769228
13 https://doi.org/10.1063/1.4794094
14 https://doi.org/10.1088/0022-3719/14/9/018
15 https://doi.org/10.1088/0268-1242/29/7/075004
16 https://doi.org/10.1088/2053-1591/1/2/025901
17 https://doi.org/10.1103/physrevb.54.17745
18 https://doi.org/10.1103/physrevb.68.165209
19 https://doi.org/10.1103/physrevb.68.195201
20 https://doi.org/10.1103/physrevlett.102.235501
21 https://doi.org/10.1109/jproc.2009.2030699
22 https://doi.org/10.1109/ted.2014.2360861
23 https://doi.org/10.1117/12.2002042
24 https://doi.org/10.7567/apex.6.111001
25 https://doi.org/10.7567/jjap.53.05fa04
26 schema:datePublished 2016-06
27 schema:datePublishedReg 2016-06-01
28 schema:description Mg, the only effective p-type dopant for nitrides, is well studied in thin films due to the important role of the impurity in light-emitting diodes and high-power electronics. However, there are few reports of Mg in thick free-standing GaN substrates. Here, we demonstrate successful incorporation of Mg into GaN grown by hydride vapor-phase epitaxy (HVPE) using metallic Mg as the doping source. The concentration of Mg obtained from four separate growth runs ranged between 1016 cm−3 and 1019 cm−3. Raman spectroscopy and x-ray diffraction revealed that Mg did not induce stress or perturb the crystalline quality of the HVPE GaN substrates. Photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies were performed to investigate the types of point defects in the crystals. The near-band-edge excitonic and shallow donor–shallow acceptor radiative recombination processes involving shallow Mg acceptors were prominent in the PL spectrum of a sample doped to 3 × 1018 cm−3, while the EPR signal was also thought to represent a shallow Mg acceptor. Detection of this signal reflects minimization of nonuniform strain obtained in the thick free-standing HVPE GaN compared with heteroepitaxial thin films.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N281a39d914c540dead2511fcb5e30ef4
33 N3b6488e7177341dd9868586d799f6123
34 sg:journal.1136213
35 schema:name Incorporation of Mg in Free-Standing HVPE GaN Substrates
36 schema:pagination 2692-2696
37 schema:productId N24783618edf7408fa0b8f9b84c3bf2e6
38 N7b02c5d484bc4a2ca5f746845103912c
39 Ne1f8898d0c304e329b8d733bbc780342
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017291436
41 https://doi.org/10.1007/s11664-016-4413-9
42 schema:sdDatePublished 2019-04-10T14:12
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N3e0308bcc3ba4c559b3778a06360b4ea
45 schema:url http://link.springer.com/10.1007%2Fs11664-016-4413-9
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N1e3469373b7b400684133e161c5cf62a rdf:first sg:person.011255733331.28
50 rdf:rest Nc4a7e19301e3400daf8a7c7d4be755a3
51 N24783618edf7408fa0b8f9b84c3bf2e6 schema:name dimensions_id
52 schema:value pub.1017291436
53 rdf:type schema:PropertyValue
54 N281a39d914c540dead2511fcb5e30ef4 schema:volumeNumber 45
55 rdf:type schema:PublicationVolume
56 N28ef240932b74c5391075f7010420b25 rdf:first sg:person.014764173061.31
57 rdf:rest rdf:nil
58 N2bab74d31ee1436fb5a6b299c9bc1bf3 rdf:first sg:person.010250454771.48
59 rdf:rest N8892248798994830bf8106426b138f35
60 N3b6488e7177341dd9868586d799f6123 schema:issueNumber 6
61 rdf:type schema:PublicationIssue
62 N3e0308bcc3ba4c559b3778a06360b4ea schema:name Springer Nature - SN SciGraph project
63 rdf:type schema:Organization
64 N67b6e369f600486897e7056008de5621 rdf:first sg:person.012043430753.12
65 rdf:rest N1e3469373b7b400684133e161c5cf62a
66 N7229b554793649869af4ff22d5200e0c rdf:first sg:person.014566574144.62
67 rdf:rest N67b6e369f600486897e7056008de5621
68 N7b02c5d484bc4a2ca5f746845103912c schema:name readcube_id
69 schema:value 5262153121c59858ffd50091735be24cf576fb5976dbc7873e42402996ff96d4
70 rdf:type schema:PropertyValue
71 N8892248798994830bf8106426b138f35 rdf:first sg:person.01213441125.70
72 rdf:rest N28ef240932b74c5391075f7010420b25
73 Nc4a7e19301e3400daf8a7c7d4be755a3 rdf:first sg:person.015325601101.86
74 rdf:rest N2bab74d31ee1436fb5a6b299c9bc1bf3
75 Ne1f8898d0c304e329b8d733bbc780342 schema:name doi
76 schema:value 10.1007/s11664-016-4413-9
77 rdf:type schema:PropertyValue
78 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
79 schema:name Chemical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
82 schema:name Physical Chemistry (incl. Structural)
83 rdf:type schema:DefinedTerm
84 sg:grant.3484860 http://pending.schema.org/fundedItem sg:pub.10.1007/s11664-016-4413-9
85 rdf:type schema:MonetaryGrant
86 sg:journal.1136213 schema:issn 0361-5235
87 1543-186X
88 schema:name Journal of Electronic Materials
89 rdf:type schema:Periodical
90 sg:person.010250454771.48 schema:affiliation https://www.grid.ac/institutes/grid.265892.2
91 schema:familyName Willoughby
92 schema:givenName W. R.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010250454771.48
94 rdf:type schema:Person
95 sg:person.011255733331.28 schema:affiliation https://www.grid.ac/institutes/grid.89170.37
96 schema:familyName Freitas
97 schema:givenName J. A.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255733331.28
99 rdf:type schema:Person
100 sg:person.012043430753.12 schema:affiliation https://www.grid.ac/institutes/grid.265892.2
101 schema:familyName Dashdorj
102 schema:givenName J.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012043430753.12
104 rdf:type schema:Person
105 sg:person.01213441125.70 schema:affiliation https://www.grid.ac/institutes/grid.450016.6
106 schema:familyName Leach
107 schema:givenName J. H.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213441125.70
109 rdf:type schema:Person
110 sg:person.014566574144.62 schema:affiliation https://www.grid.ac/institutes/grid.265892.2
111 schema:familyName Zvanut
112 schema:givenName M. E.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014566574144.62
114 rdf:type schema:Person
115 sg:person.014764173061.31 schema:affiliation https://www.grid.ac/institutes/grid.450016.6
116 schema:familyName Udwary
117 schema:givenName K.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014764173061.31
119 rdf:type schema:Person
120 sg:person.015325601101.86 schema:affiliation https://www.grid.ac/institutes/grid.89170.37
121 schema:familyName Glaser
122 schema:givenName E. R.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015325601101.86
124 rdf:type schema:Person
125 https://doi.org/10.1002/pssc.200303130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029881813
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/pssc.200778685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020785020
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/pssc.200880912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025142483
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jcrysgro.2011.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025193870
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.physb.2007.08.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012293534
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0022-0248(01)01456-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042941696
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1021/cg5013523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023705585
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.365711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057993175
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.4769228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058064442
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.4794094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058070471
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1088/0022-3719/14/9/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058959588
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1088/0268-1242/29/7/075004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025402501
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1088/2053-1591/1/2/025901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007309898
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.54.17745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582051
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.68.165209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060607856
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.68.195201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060608030
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.102.235501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755516
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/jproc.2009.2030699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297134
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/ted.2014.2360861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061596431
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1117/12.2002042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030145265
164 rdf:type schema:CreativeWork
165 https://doi.org/10.7567/apex.6.111001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073831625
166 rdf:type schema:CreativeWork
167 https://doi.org/10.7567/jjap.53.05fa04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073838526
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.265892.2 schema:alternateName University of Alabama at Birmingham
170 schema:name University of Alabama at Birmingham, 35294, Birmingham, AL, USA
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.450016.6 schema:alternateName Kyma Technologies (United States)
173 schema:name Kyma Technologies Inc., 27617, Raleigh, NC, USA
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.89170.37 schema:alternateName United States Naval Research Laboratory
176 schema:name Naval Research Laboratory, 20375, Washington, DC, USA
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...