Incorporation of Mg in Free-Standing HVPE GaN Substrates View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-06

AUTHORS

M. E. Zvanut, J. Dashdorj, J. A. Freitas, E. R. Glaser, W. R. Willoughby, J. H. Leach, K. Udwary

ABSTRACT

Mg, the only effective p-type dopant for nitrides, is well studied in thin films due to the important role of the impurity in light-emitting diodes and high-power electronics. However, there are few reports of Mg in thick free-standing GaN substrates. Here, we demonstrate successful incorporation of Mg into GaN grown by hydride vapor-phase epitaxy (HVPE) using metallic Mg as the doping source. The concentration of Mg obtained from four separate growth runs ranged between 1016 cm−3 and 1019 cm−3. Raman spectroscopy and x-ray diffraction revealed that Mg did not induce stress or perturb the crystalline quality of the HVPE GaN substrates. Photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies were performed to investigate the types of point defects in the crystals. The near-band-edge excitonic and shallow donor–shallow acceptor radiative recombination processes involving shallow Mg acceptors were prominent in the PL spectrum of a sample doped to 3 × 1018 cm−3, while the EPR signal was also thought to represent a shallow Mg acceptor. Detection of this signal reflects minimization of nonuniform strain obtained in the thick free-standing HVPE GaN compared with heteroepitaxial thin films. More... »

PAGES

2692-2696

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/s11664-016-4413-9

DOI

http://dx.doi.org/10.1007/s11664-016-4413-9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1017291436


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Alabama at Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "University of Alabama at Birmingham, 35294, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zvanut", 
        "givenName": "M. E.", 
        "id": "sg:person.014566574144.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014566574144.62"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alabama at Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "University of Alabama at Birmingham, 35294, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dashdorj", 
        "givenName": "J.", 
        "id": "sg:person.012043430753.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012043430753.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Naval Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Naval Research Laboratory, 20375, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Freitas", 
        "givenName": "J. A.", 
        "id": "sg:person.011255733331.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255733331.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "United States Naval Research Laboratory", 
          "id": "https://www.grid.ac/institutes/grid.89170.37", 
          "name": [
            "Naval Research Laboratory, 20375, Washington, DC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glaser", 
        "givenName": "E. R.", 
        "id": "sg:person.015325601101.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015325601101.86"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Alabama at Birmingham", 
          "id": "https://www.grid.ac/institutes/grid.265892.2", 
          "name": [
            "University of Alabama at Birmingham, 35294, Birmingham, AL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Willoughby", 
        "givenName": "W. R.", 
        "id": "sg:person.010250454771.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010250454771.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyma Technologies (United States)", 
          "id": "https://www.grid.ac/institutes/grid.450016.6", 
          "name": [
            "Kyma Technologies Inc., 27617, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Leach", 
        "givenName": "J. H.", 
        "id": "sg:person.01213441125.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213441125.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Kyma Technologies (United States)", 
          "id": "https://www.grid.ac/institutes/grid.450016.6", 
          "name": [
            "Kyma Technologies Inc., 27617, Raleigh, NC, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Udwary", 
        "givenName": "K.", 
        "id": "sg:person.014764173061.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014764173061.31"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/2053-1591/1/2/025901", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007309898"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.physb.2007.08.179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012293534"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssc.200778685", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020785020"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/cg5013523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023705585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssc.200880912", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025142483"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2011.12.017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025193870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0268-1242/29/7/075004", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025402501"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pssc.200303130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029881813"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.2002042", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030145265"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-0248(01)01456-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042941696"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.365711", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057993175"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4769228", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058064442"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.4794094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058070471"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/14/9/018", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058959588"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.17745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.17745", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060582051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.165209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.165209", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607856"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.195201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060608030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.195201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060608030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.235501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.102.235501", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060755516"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/jproc.2009.2030699", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061297134"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/ted.2014.2360861", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061596431"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/apex.6.111001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073831625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7567/jjap.53.05fa04", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073838526"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-06", 
    "datePublishedReg": "2016-06-01", 
    "description": "Mg, the only effective p-type dopant for nitrides, is well studied in thin films due to the important role of the impurity in light-emitting diodes and high-power electronics. However, there are few reports of Mg in thick free-standing GaN substrates. Here, we demonstrate successful incorporation of Mg into GaN grown by hydride vapor-phase epitaxy (HVPE) using metallic Mg as the doping source. The concentration of Mg obtained from four separate growth runs ranged between 1016 cm\u22123 and 1019 cm\u22123. Raman spectroscopy and x-ray diffraction revealed that Mg did not induce stress or perturb the crystalline quality of the HVPE GaN substrates. Photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies were performed to investigate the types of point defects in the crystals. The near-band-edge excitonic and shallow donor\u2013shallow acceptor radiative recombination processes involving shallow Mg acceptors were prominent in the PL spectrum of a sample doped to 3 \u00d7 1018 cm\u22123, while the EPR signal was also thought to represent a shallow Mg acceptor. Detection of this signal reflects minimization of nonuniform strain obtained in the thick free-standing HVPE GaN compared with heteroepitaxial thin films.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1007/s11664-016-4413-9", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isFundedItemOf": [
      {
        "id": "sg:grant.3484860", 
        "type": "MonetaryGrant"
      }
    ], 
    "isPartOf": [
      {
        "id": "sg:journal.1136213", 
        "issn": [
          "0361-5235", 
          "1543-186X"
        ], 
        "name": "Journal of Electronic Materials", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Incorporation of Mg in Free-Standing HVPE GaN Substrates", 
    "pagination": "2692-2696", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "5262153121c59858ffd50091735be24cf576fb5976dbc7873e42402996ff96d4"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/s11664-016-4413-9"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1017291436"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1007/s11664-016-4413-9", 
      "https://app.dimensions.ai/details/publication/pub.1017291436"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000521.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1007%2Fs11664-016-4413-9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4413-9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4413-9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4413-9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-016-4413-9'


 

This table displays all metadata directly associated to this object as RDF triples.

177 TRIPLES      21 PREDICATES      49 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/s11664-016-4413-9 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N3388e87bd2ce4944b045277d163772f9
4 schema:citation https://doi.org/10.1002/pssc.200303130
5 https://doi.org/10.1002/pssc.200778685
6 https://doi.org/10.1002/pssc.200880912
7 https://doi.org/10.1016/j.jcrysgro.2011.12.017
8 https://doi.org/10.1016/j.physb.2007.08.179
9 https://doi.org/10.1016/s0022-0248(01)01456-7
10 https://doi.org/10.1021/cg5013523
11 https://doi.org/10.1063/1.365711
12 https://doi.org/10.1063/1.4769228
13 https://doi.org/10.1063/1.4794094
14 https://doi.org/10.1088/0022-3719/14/9/018
15 https://doi.org/10.1088/0268-1242/29/7/075004
16 https://doi.org/10.1088/2053-1591/1/2/025901
17 https://doi.org/10.1103/physrevb.54.17745
18 https://doi.org/10.1103/physrevb.68.165209
19 https://doi.org/10.1103/physrevb.68.195201
20 https://doi.org/10.1103/physrevlett.102.235501
21 https://doi.org/10.1109/jproc.2009.2030699
22 https://doi.org/10.1109/ted.2014.2360861
23 https://doi.org/10.1117/12.2002042
24 https://doi.org/10.7567/apex.6.111001
25 https://doi.org/10.7567/jjap.53.05fa04
26 schema:datePublished 2016-06
27 schema:datePublishedReg 2016-06-01
28 schema:description Mg, the only effective p-type dopant for nitrides, is well studied in thin films due to the important role of the impurity in light-emitting diodes and high-power electronics. However, there are few reports of Mg in thick free-standing GaN substrates. Here, we demonstrate successful incorporation of Mg into GaN grown by hydride vapor-phase epitaxy (HVPE) using metallic Mg as the doping source. The concentration of Mg obtained from four separate growth runs ranged between 1016 cm−3 and 1019 cm−3. Raman spectroscopy and x-ray diffraction revealed that Mg did not induce stress or perturb the crystalline quality of the HVPE GaN substrates. Photoluminescence (PL) and electron paramagnetic resonance (EPR) spectroscopies were performed to investigate the types of point defects in the crystals. The near-band-edge excitonic and shallow donor–shallow acceptor radiative recombination processes involving shallow Mg acceptors were prominent in the PL spectrum of a sample doped to 3 × 1018 cm−3, while the EPR signal was also thought to represent a shallow Mg acceptor. Detection of this signal reflects minimization of nonuniform strain obtained in the thick free-standing HVPE GaN compared with heteroepitaxial thin films.
29 schema:genre research_article
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N406185792134492689b7ae3e170210ad
33 N6599288da4fd41f8aac6b4d86269346a
34 sg:journal.1136213
35 schema:name Incorporation of Mg in Free-Standing HVPE GaN Substrates
36 schema:pagination 2692-2696
37 schema:productId N238e79cc932140fd9898a7586d7e3760
38 N349d98899a474f5b80150d47af76c588
39 N4048e19b43a24da889e1175d625bc7f0
40 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017291436
41 https://doi.org/10.1007/s11664-016-4413-9
42 schema:sdDatePublished 2019-04-10T14:12
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N007b8287d6e5413490a8271dca88ab96
45 schema:url http://link.springer.com/10.1007%2Fs11664-016-4413-9
46 sgo:license sg:explorer/license/
47 sgo:sdDataset articles
48 rdf:type schema:ScholarlyArticle
49 N007b8287d6e5413490a8271dca88ab96 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N238e79cc932140fd9898a7586d7e3760 schema:name readcube_id
52 schema:value 5262153121c59858ffd50091735be24cf576fb5976dbc7873e42402996ff96d4
53 rdf:type schema:PropertyValue
54 N2535bde768c94dc3b5a426b0d911b200 rdf:first sg:person.015325601101.86
55 rdf:rest N99e458dd33fa4629ad9ec160a750572d
56 N3388e87bd2ce4944b045277d163772f9 rdf:first sg:person.014566574144.62
57 rdf:rest Na9741842edfd4024ba479d686272a8ea
58 N349d98899a474f5b80150d47af76c588 schema:name doi
59 schema:value 10.1007/s11664-016-4413-9
60 rdf:type schema:PropertyValue
61 N4048e19b43a24da889e1175d625bc7f0 schema:name dimensions_id
62 schema:value pub.1017291436
63 rdf:type schema:PropertyValue
64 N406185792134492689b7ae3e170210ad schema:issueNumber 6
65 rdf:type schema:PublicationIssue
66 N6599288da4fd41f8aac6b4d86269346a schema:volumeNumber 45
67 rdf:type schema:PublicationVolume
68 N8e90020dc0fd4848b56969b844634e4c rdf:first sg:person.01213441125.70
69 rdf:rest Nc1fb9bb1fcdc41adbaa9d2cb36ba2088
70 N99e458dd33fa4629ad9ec160a750572d rdf:first sg:person.010250454771.48
71 rdf:rest N8e90020dc0fd4848b56969b844634e4c
72 Na258b423ab4946d8a3f5b4dc391ff1db rdf:first sg:person.011255733331.28
73 rdf:rest N2535bde768c94dc3b5a426b0d911b200
74 Na9741842edfd4024ba479d686272a8ea rdf:first sg:person.012043430753.12
75 rdf:rest Na258b423ab4946d8a3f5b4dc391ff1db
76 Nc1fb9bb1fcdc41adbaa9d2cb36ba2088 rdf:first sg:person.014764173061.31
77 rdf:rest rdf:nil
78 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
79 schema:name Chemical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
82 schema:name Physical Chemistry (incl. Structural)
83 rdf:type schema:DefinedTerm
84 sg:grant.3484860 http://pending.schema.org/fundedItem sg:pub.10.1007/s11664-016-4413-9
85 rdf:type schema:MonetaryGrant
86 sg:journal.1136213 schema:issn 0361-5235
87 1543-186X
88 schema:name Journal of Electronic Materials
89 rdf:type schema:Periodical
90 sg:person.010250454771.48 schema:affiliation https://www.grid.ac/institutes/grid.265892.2
91 schema:familyName Willoughby
92 schema:givenName W. R.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010250454771.48
94 rdf:type schema:Person
95 sg:person.011255733331.28 schema:affiliation https://www.grid.ac/institutes/grid.89170.37
96 schema:familyName Freitas
97 schema:givenName J. A.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011255733331.28
99 rdf:type schema:Person
100 sg:person.012043430753.12 schema:affiliation https://www.grid.ac/institutes/grid.265892.2
101 schema:familyName Dashdorj
102 schema:givenName J.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012043430753.12
104 rdf:type schema:Person
105 sg:person.01213441125.70 schema:affiliation https://www.grid.ac/institutes/grid.450016.6
106 schema:familyName Leach
107 schema:givenName J. H.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01213441125.70
109 rdf:type schema:Person
110 sg:person.014566574144.62 schema:affiliation https://www.grid.ac/institutes/grid.265892.2
111 schema:familyName Zvanut
112 schema:givenName M. E.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014566574144.62
114 rdf:type schema:Person
115 sg:person.014764173061.31 schema:affiliation https://www.grid.ac/institutes/grid.450016.6
116 schema:familyName Udwary
117 schema:givenName K.
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014764173061.31
119 rdf:type schema:Person
120 sg:person.015325601101.86 schema:affiliation https://www.grid.ac/institutes/grid.89170.37
121 schema:familyName Glaser
122 schema:givenName E. R.
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015325601101.86
124 rdf:type schema:Person
125 https://doi.org/10.1002/pssc.200303130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029881813
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1002/pssc.200778685 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020785020
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1002/pssc.200880912 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025142483
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/j.jcrysgro.2011.12.017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025193870
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/j.physb.2007.08.179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012293534
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1016/s0022-0248(01)01456-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042941696
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1021/cg5013523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023705585
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1063/1.365711 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057993175
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1063/1.4769228 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058064442
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1063/1.4794094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058070471
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1088/0022-3719/14/9/018 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058959588
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1088/0268-1242/29/7/075004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025402501
148 rdf:type schema:CreativeWork
149 https://doi.org/10.1088/2053-1591/1/2/025901 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007309898
150 rdf:type schema:CreativeWork
151 https://doi.org/10.1103/physrevb.54.17745 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060582051
152 rdf:type schema:CreativeWork
153 https://doi.org/10.1103/physrevb.68.165209 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060607856
154 rdf:type schema:CreativeWork
155 https://doi.org/10.1103/physrevb.68.195201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060608030
156 rdf:type schema:CreativeWork
157 https://doi.org/10.1103/physrevlett.102.235501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060755516
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1109/jproc.2009.2030699 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061297134
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1109/ted.2014.2360861 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061596431
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1117/12.2002042 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030145265
164 rdf:type schema:CreativeWork
165 https://doi.org/10.7567/apex.6.111001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073831625
166 rdf:type schema:CreativeWork
167 https://doi.org/10.7567/jjap.53.05fa04 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073838526
168 rdf:type schema:CreativeWork
169 https://www.grid.ac/institutes/grid.265892.2 schema:alternateName University of Alabama at Birmingham
170 schema:name University of Alabama at Birmingham, 35294, Birmingham, AL, USA
171 rdf:type schema:Organization
172 https://www.grid.ac/institutes/grid.450016.6 schema:alternateName Kyma Technologies (United States)
173 schema:name Kyma Technologies Inc., 27617, Raleigh, NC, USA
174 rdf:type schema:Organization
175 https://www.grid.ac/institutes/grid.89170.37 schema:alternateName United States Naval Research Laboratory
176 schema:name Naval Research Laboratory, 20375, Washington, DC, USA
177 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...