Effect of Growth Parameters and Substrate Surface Preparation for High-Density Vertical GaAs/GaAsSb Core–Shell Nanowires on Silicon with Photoluminescence Emission at ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-04

AUTHORS

Pavan Kumar Kasanaboina, Sai Krishna Ojha, Shifat Us Sami, C. Lewis Reynolds, Yang Liu, Shanthi Iyer

ABSTRACT

GaAs/GaAsSb nanowire (NW) arrays are ideally suited to meet the demands of the next generation infrared (IR) photodetectors with potential for improving detection. NWs in a core–shell geometry have the advantage of providing axial direction for a long optical path for enhanced optical absorption and a short radial path for charge diffusion and collection. For the Ga-assisted molecular beam epitaxial growth of vertical, dense and uniform GaAs core NWs on Si (111), the effects of substrate surface preparation in combination with growth parameter variation were examined. On the epiready substrate without any surface preparation, both initial Ga shutter opening duration and V/III beam equivalent pressure ratio play a vital role in achieving almost all vertical NWs with moderate density ~107 cm−2. Also the spatial uniformity of the NWs was poor. Substrate surface preparation by chemical cleaning followed by oxidation in air led to highly vertical and uniform NWs with high density (8 × 108 cm−2). The GaAsSb shell was then successfully grown around the highly dense and vertical core GaAs NWs at growth temperatures ranging from 550°C to 590°C. It was found that growth temperature has a strong influence on Sb incorporation in the NWs and, hence, the NW morphology and 4K photoluminescence (PL) spectra. The presence of x-ray diffraction peaks corresponding to (111) reflection only and its higher-order reflections attest to the vertical alignment of NWs. Strain in the NWs as estimated using the Williamson–Hall isotropic strain model increases with Sb incorporation, which results in bending of the NWs with increasing Sb. Structural properties of these NWs using scanning transmission electron microscopy (STEM) are also presented. The temperature dependence PL of the NWs exhibited “S-curve” behavior, which is a well-known signature of localized excitons and a room temperature band edge PL emission occurring at ~1.3 μm. More... »

PAGES

2108-2114

References to SciGraph publications

  • 2011-12. Influence of the oxide layer for growth of self-assisted InAs nanowires on Si(111) in NANOSCALE RESEARCH LETTERS
  • 2009-10. Nanowire photonics in NATURE PHOTONICS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/s11664-015-4316-1

    DOI

    http://dx.doi.org/10.1007/s11664-015-4316-1

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002926944


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Materials Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "North Carolina Agricultural and Technical State University", 
              "id": "https://www.grid.ac/institutes/grid.261037.1", 
              "name": [
                "Department of Electrical and Computer Engineering, North Carolina A&T State University, 27411, Greensboro, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kasanaboina", 
            "givenName": "Pavan  Kumar", 
            "id": "sg:person.0615472217.52", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615472217.52"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "North Carolina Agricultural and Technical State University", 
              "id": "https://www.grid.ac/institutes/grid.261037.1", 
              "name": [
                "Department of Electrical and Computer Engineering, North Carolina A&T State University, 27411, Greensboro, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Ojha", 
            "givenName": "Sai Krishna", 
            "id": "sg:person.012523471275.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012523471275.41"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "name": [
                "Nanoengineering, Joint School of Nanoscience and Nanoengineering, NCA&T State University, 27401, Greensboro, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Sami", 
            "givenName": "Shifat  Us", 
            "id": "sg:person.014116432275.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014116432275.49"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "North Carolina State University", 
              "id": "https://www.grid.ac/institutes/grid.40803.3f", 
              "name": [
                "Department of Materials Science and Engineering, North Carolina State University, 27695, Raleigh, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Lewis Reynolds", 
            "givenName": "C.", 
            "id": "sg:person.0607207430.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607207430.09"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "North Carolina State University", 
              "id": "https://www.grid.ac/institutes/grid.40803.3f", 
              "name": [
                "Department of Materials Science and Engineering, North Carolina State University, 27695, Raleigh, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Liu", 
            "givenName": "Yang", 
            "id": "sg:person.0604344630.06", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604344630.06"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "North Carolina Agricultural and Technical State University", 
              "id": "https://www.grid.ac/institutes/grid.261037.1", 
              "name": [
                "Department of Electrical and Computer Engineering, North Carolina A&T State University, 27411, Greensboro, NC, USA", 
                "Nanoengineering, Joint School of Nanoscience and Nanoengineering, NCA&T State University, 27401, Greensboro, NC, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Iyer", 
            "givenName": "Shanthi", 
            "id": "sg:person.012205551367.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012205551367.45"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1088/0957-4484/25/1/014015", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1010078505"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0957-4484/22/7/075601", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019016562"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0268-1242/28/10/105025", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019982808"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1039/c3nr01145c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020744445"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1117/12.2080572", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021968309"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2009.184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026127397", 
              "https://doi.org/10.1038/nphoton.2009.184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nphoton.2009.184", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026127397", 
              "https://doi.org/10.1038/nphoton.2009.184"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl5012036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1027327458"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.1060367", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032543227"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl9041774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037074738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl9041774", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037074738"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/1556-276x-6-516", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037477798", 
              "https://doi.org/10.1186/1556-276x-6-516"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl100161z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046261744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl100161z", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046261744"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/acs.cgd.5b00374", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1055083282"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl1005405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056217850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl1005405", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056217850"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl401404w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056220099"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl404376m", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056220548"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.119797", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057683983"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1583147", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057722835"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.1931032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057832719"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1063/1.3548544", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1057971843"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1088/0268-1242/30/10/105036", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1059063783"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/jstqe.2010.2093508", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061336234"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2016-04", 
        "datePublishedReg": "2016-04-01", 
        "description": "GaAs/GaAsSb nanowire (NW) arrays are ideally suited to meet the demands of the next generation infrared (IR) photodetectors with potential for improving detection. NWs in a core\u2013shell geometry have the advantage of providing axial direction for a long optical path for enhanced optical absorption and a short radial path for charge diffusion and collection. For the Ga-assisted molecular beam epitaxial growth of vertical, dense and uniform GaAs core NWs on Si (111), the effects of substrate surface preparation in combination with growth parameter variation were examined. On the epiready substrate without any surface preparation, both initial Ga shutter opening duration and V/III beam equivalent pressure ratio play a vital role in achieving almost all vertical NWs with moderate density ~107 cm\u22122. Also the spatial uniformity of the NWs was poor. Substrate surface preparation by chemical cleaning followed by oxidation in air led to highly vertical and uniform NWs with high density (8 \u00d7 108 cm\u22122). The GaAsSb shell was then successfully grown around the highly dense and vertical core GaAs NWs at growth temperatures ranging from 550\u00b0C to 590\u00b0C. It was found that growth temperature has a strong influence on Sb incorporation in the NWs and, hence, the NW morphology and 4K photoluminescence (PL) spectra. The presence of x-ray diffraction peaks corresponding to (111) reflection only and its higher-order reflections attest to the vertical alignment of NWs. Strain in the NWs as estimated using the Williamson\u2013Hall isotropic strain model increases with Sb incorporation, which results in bending of the NWs with increasing Sb. Structural properties of these NWs using scanning transmission electron microscopy (STEM) are also presented. The temperature dependence PL of the NWs exhibited \u201cS-curve\u201d behavior, which is a well-known signature of localized excitons and a room temperature band edge PL emission occurring at ~1.3 \u03bcm.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1007/s11664-015-4316-1", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136213", 
            "issn": [
              "0361-5235", 
              "1543-186X"
            ], 
            "name": "Journal of Electronic Materials", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "4", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "45"
          }
        ], 
        "name": "Effect of Growth Parameters and Substrate Surface Preparation for High-Density Vertical GaAs/GaAsSb Core\u2013Shell Nanowires on Silicon with Photoluminescence Emission at 1.3 \u03bcm", 
        "pagination": "2108-2114", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "0df08cc6693ad12d77c653ff0e72f286fb064ca8827107d860ebaf783ff04187"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/s11664-015-4316-1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002926944"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1007/s11664-015-4316-1", 
          "https://app.dimensions.ai/details/publication/pub.1002926944"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T18:22", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000520.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1007%2Fs11664-015-4316-1"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/s11664-015-4316-1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/s11664-015-4316-1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/s11664-015-4316-1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/s11664-015-4316-1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    167 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/s11664-015-4316-1 schema:about anzsrc-for:09
    2 anzsrc-for:0912
    3 schema:author N20331d072be847ed9a394a373be0048d
    4 schema:citation sg:pub.10.1038/nphoton.2009.184
    5 sg:pub.10.1186/1556-276x-6-516
    6 https://doi.org/10.1021/acs.cgd.5b00374
    7 https://doi.org/10.1021/nl100161z
    8 https://doi.org/10.1021/nl1005405
    9 https://doi.org/10.1021/nl401404w
    10 https://doi.org/10.1021/nl404376m
    11 https://doi.org/10.1021/nl5012036
    12 https://doi.org/10.1021/nl9041774
    13 https://doi.org/10.1039/c3nr01145c
    14 https://doi.org/10.1063/1.119797
    15 https://doi.org/10.1063/1.1583147
    16 https://doi.org/10.1063/1.1931032
    17 https://doi.org/10.1063/1.3548544
    18 https://doi.org/10.1088/0268-1242/28/10/105025
    19 https://doi.org/10.1088/0268-1242/30/10/105036
    20 https://doi.org/10.1088/0957-4484/22/7/075601
    21 https://doi.org/10.1088/0957-4484/25/1/014015
    22 https://doi.org/10.1109/jstqe.2010.2093508
    23 https://doi.org/10.1117/12.2080572
    24 https://doi.org/10.1126/science.1060367
    25 schema:datePublished 2016-04
    26 schema:datePublishedReg 2016-04-01
    27 schema:description GaAs/GaAsSb nanowire (NW) arrays are ideally suited to meet the demands of the next generation infrared (IR) photodetectors with potential for improving detection. NWs in a core–shell geometry have the advantage of providing axial direction for a long optical path for enhanced optical absorption and a short radial path for charge diffusion and collection. For the Ga-assisted molecular beam epitaxial growth of vertical, dense and uniform GaAs core NWs on Si (111), the effects of substrate surface preparation in combination with growth parameter variation were examined. On the epiready substrate without any surface preparation, both initial Ga shutter opening duration and V/III beam equivalent pressure ratio play a vital role in achieving almost all vertical NWs with moderate density ~107 cm−2. Also the spatial uniformity of the NWs was poor. Substrate surface preparation by chemical cleaning followed by oxidation in air led to highly vertical and uniform NWs with high density (8 × 108 cm−2). The GaAsSb shell was then successfully grown around the highly dense and vertical core GaAs NWs at growth temperatures ranging from 550°C to 590°C. It was found that growth temperature has a strong influence on Sb incorporation in the NWs and, hence, the NW morphology and 4K photoluminescence (PL) spectra. The presence of x-ray diffraction peaks corresponding to (111) reflection only and its higher-order reflections attest to the vertical alignment of NWs. Strain in the NWs as estimated using the Williamson–Hall isotropic strain model increases with Sb incorporation, which results in bending of the NWs with increasing Sb. Structural properties of these NWs using scanning transmission electron microscopy (STEM) are also presented. The temperature dependence PL of the NWs exhibited “S-curve” behavior, which is a well-known signature of localized excitons and a room temperature band edge PL emission occurring at ~1.3 μm.
    28 schema:genre research_article
    29 schema:inLanguage en
    30 schema:isAccessibleForFree false
    31 schema:isPartOf N010f35058aeb449cb866a4320ee2c665
    32 Ndb7eb25dd56045c09ecde9d953b4045b
    33 sg:journal.1136213
    34 schema:name Effect of Growth Parameters and Substrate Surface Preparation for High-Density Vertical GaAs/GaAsSb Core–Shell Nanowires on Silicon with Photoluminescence Emission at 1.3 μm
    35 schema:pagination 2108-2114
    36 schema:productId N18174e236d564f86a8e5525a950b7aae
    37 N5d0c9235ab8f422b8ccb787696892989
    38 N80c999d5fa2041549b5c1c16d8281f97
    39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002926944
    40 https://doi.org/10.1007/s11664-015-4316-1
    41 schema:sdDatePublished 2019-04-10T18:22
    42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    43 schema:sdPublisher N136c566716cb430cb2e366adc2c631e9
    44 schema:url http://link.springer.com/10.1007%2Fs11664-015-4316-1
    45 sgo:license sg:explorer/license/
    46 sgo:sdDataset articles
    47 rdf:type schema:ScholarlyArticle
    48 N010f35058aeb449cb866a4320ee2c665 schema:issueNumber 4
    49 rdf:type schema:PublicationIssue
    50 N0a014ae801e140ea8b3be15a532f6c61 schema:name Nanoengineering, Joint School of Nanoscience and Nanoengineering, NCA&T State University, 27401, Greensboro, NC, USA
    51 rdf:type schema:Organization
    52 N136c566716cb430cb2e366adc2c631e9 schema:name Springer Nature - SN SciGraph project
    53 rdf:type schema:Organization
    54 N18174e236d564f86a8e5525a950b7aae schema:name dimensions_id
    55 schema:value pub.1002926944
    56 rdf:type schema:PropertyValue
    57 N20331d072be847ed9a394a373be0048d rdf:first sg:person.0615472217.52
    58 rdf:rest N4c3261e8af6d4f0c82a5fe51b1534b02
    59 N4c3261e8af6d4f0c82a5fe51b1534b02 rdf:first sg:person.012523471275.41
    60 rdf:rest Nae2e59d6dd2343ba9eaa7ac09d6c30e9
    61 N5d0c9235ab8f422b8ccb787696892989 schema:name doi
    62 schema:value 10.1007/s11664-015-4316-1
    63 rdf:type schema:PropertyValue
    64 N6b9c99cdb53e4b83acbef779b6898569 rdf:first sg:person.0604344630.06
    65 rdf:rest Na97101ceb549410c941258a82919e6a0
    66 N80c999d5fa2041549b5c1c16d8281f97 schema:name readcube_id
    67 schema:value 0df08cc6693ad12d77c653ff0e72f286fb064ca8827107d860ebaf783ff04187
    68 rdf:type schema:PropertyValue
    69 Na97101ceb549410c941258a82919e6a0 rdf:first sg:person.012205551367.45
    70 rdf:rest rdf:nil
    71 Nae2e59d6dd2343ba9eaa7ac09d6c30e9 rdf:first sg:person.014116432275.49
    72 rdf:rest Nb55bd0b58e98471588857230fe2ddb74
    73 Nb55bd0b58e98471588857230fe2ddb74 rdf:first sg:person.0607207430.09
    74 rdf:rest N6b9c99cdb53e4b83acbef779b6898569
    75 Ndb7eb25dd56045c09ecde9d953b4045b schema:volumeNumber 45
    76 rdf:type schema:PublicationVolume
    77 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    78 schema:name Engineering
    79 rdf:type schema:DefinedTerm
    80 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Materials Engineering
    82 rdf:type schema:DefinedTerm
    83 sg:journal.1136213 schema:issn 0361-5235
    84 1543-186X
    85 schema:name Journal of Electronic Materials
    86 rdf:type schema:Periodical
    87 sg:person.012205551367.45 schema:affiliation https://www.grid.ac/institutes/grid.261037.1
    88 schema:familyName Iyer
    89 schema:givenName Shanthi
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012205551367.45
    91 rdf:type schema:Person
    92 sg:person.012523471275.41 schema:affiliation https://www.grid.ac/institutes/grid.261037.1
    93 schema:familyName Ojha
    94 schema:givenName Sai Krishna
    95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012523471275.41
    96 rdf:type schema:Person
    97 sg:person.014116432275.49 schema:affiliation N0a014ae801e140ea8b3be15a532f6c61
    98 schema:familyName Sami
    99 schema:givenName Shifat Us
    100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014116432275.49
    101 rdf:type schema:Person
    102 sg:person.0604344630.06 schema:affiliation https://www.grid.ac/institutes/grid.40803.3f
    103 schema:familyName Liu
    104 schema:givenName Yang
    105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0604344630.06
    106 rdf:type schema:Person
    107 sg:person.0607207430.09 schema:affiliation https://www.grid.ac/institutes/grid.40803.3f
    108 schema:familyName Lewis Reynolds
    109 schema:givenName C.
    110 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0607207430.09
    111 rdf:type schema:Person
    112 sg:person.0615472217.52 schema:affiliation https://www.grid.ac/institutes/grid.261037.1
    113 schema:familyName Kasanaboina
    114 schema:givenName Pavan Kumar
    115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0615472217.52
    116 rdf:type schema:Person
    117 sg:pub.10.1038/nphoton.2009.184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026127397
    118 https://doi.org/10.1038/nphoton.2009.184
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1186/1556-276x-6-516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037477798
    121 https://doi.org/10.1186/1556-276x-6-516
    122 rdf:type schema:CreativeWork
    123 https://doi.org/10.1021/acs.cgd.5b00374 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055083282
    124 rdf:type schema:CreativeWork
    125 https://doi.org/10.1021/nl100161z schema:sameAs https://app.dimensions.ai/details/publication/pub.1046261744
    126 rdf:type schema:CreativeWork
    127 https://doi.org/10.1021/nl1005405 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056217850
    128 rdf:type schema:CreativeWork
    129 https://doi.org/10.1021/nl401404w schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220099
    130 rdf:type schema:CreativeWork
    131 https://doi.org/10.1021/nl404376m schema:sameAs https://app.dimensions.ai/details/publication/pub.1056220548
    132 rdf:type schema:CreativeWork
    133 https://doi.org/10.1021/nl5012036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027327458
    134 rdf:type schema:CreativeWork
    135 https://doi.org/10.1021/nl9041774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037074738
    136 rdf:type schema:CreativeWork
    137 https://doi.org/10.1039/c3nr01145c schema:sameAs https://app.dimensions.ai/details/publication/pub.1020744445
    138 rdf:type schema:CreativeWork
    139 https://doi.org/10.1063/1.119797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057683983
    140 rdf:type schema:CreativeWork
    141 https://doi.org/10.1063/1.1583147 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057722835
    142 rdf:type schema:CreativeWork
    143 https://doi.org/10.1063/1.1931032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057832719
    144 rdf:type schema:CreativeWork
    145 https://doi.org/10.1063/1.3548544 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057971843
    146 rdf:type schema:CreativeWork
    147 https://doi.org/10.1088/0268-1242/28/10/105025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019982808
    148 rdf:type schema:CreativeWork
    149 https://doi.org/10.1088/0268-1242/30/10/105036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059063783
    150 rdf:type schema:CreativeWork
    151 https://doi.org/10.1088/0957-4484/22/7/075601 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019016562
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1088/0957-4484/25/1/014015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010078505
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.1109/jstqe.2010.2093508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061336234
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.1117/12.2080572 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021968309
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.1126/science.1060367 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032543227
    160 rdf:type schema:CreativeWork
    161 https://www.grid.ac/institutes/grid.261037.1 schema:alternateName North Carolina Agricultural and Technical State University
    162 schema:name Department of Electrical and Computer Engineering, North Carolina A&T State University, 27411, Greensboro, NC, USA
    163 Nanoengineering, Joint School of Nanoscience and Nanoengineering, NCA&T State University, 27401, Greensboro, NC, USA
    164 rdf:type schema:Organization
    165 https://www.grid.ac/institutes/grid.40803.3f schema:alternateName North Carolina State University
    166 schema:name Department of Materials Science and Engineering, North Carolina State University, 27695, Raleigh, NC, USA
    167 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...